
Leveraging Domain Vocabulary across Artefacts: a
Comparison of Conceptually Related Applications

Tezcan Dilshener Yijun Yu Michel Wermelinger
Computing Department, Centre for Research in Computing

The Open University
Milton Keynes, United Kingdom

Abstract—In order to comprehend an unfamiliar application

while implementing a change request, software developers refer
to all available project artefacts. Although application domain
vocabulary plays an essential role in understanding these
artefacts, to our knowledge, little has been studied on whether
they adhere to the domain vocabulary. In this paper we analyse
two applications that implement the concepts defined by the
Basel-II Accord between financial institutions. We had access to
the user guide, the source code, and some change requests of each
application. By analysing the artefacts’ vocabulary and the
Accord text, we identify the common domain concepts and their
correlation to the project vocabulary. We found good conceptual
alignment among the artefacts. Searching for relevant classes,
given a change request, has shown that change requests or class
names do not always explicitly reveal the concepts. Specifically,
project conventions cause class names to be overloaded with
concept-like terms and may impact the recall and precision of the
results, suggesting that leveraging the vocabulary from project
artefacts can improve the overall accuracy of the search results
and benefit program understanding. We discuss the implication
of our results for software maintenance.

Index Terms—business software maintenance; domain
vocabulary; change requests; empirical study; concept relations.

I. INTRODUCTION
As valuable and strategic assets to companies and playing a

central role for the business, software applications require
continued and substantial effort to be maintained. From the
estimated 80% of overall maintenance efforts, 40-60% is
dedicated to comprehension [1]. According to Davison et al.
[2], even experienced programmers face tremendous learning
curves to understand the application domain when they move
to work on another area within their current projects. It is
argued that during maintenance there is a tendency of 60-80%
of time being spent on discovering, which counts towards 20%
of overall project costs. Corbi et al. [3] identified that
understanding a program is an important activity for a
developer to perform the designated maintenance tasks and
claimed that such activities are treated as transparent and most
of the time they go unmentioned.

Often when the original developers left the project a long
time ago, software companies turn towards third-party
developers to take over the maintenance tasks [21]. The
impermanent nature of their job and a high turnover among
these developers cause the knowledge of the applications to
move further away from its source. Each time a new developer
is designated to perform a maintenance task, the associated

high learning curve results in loss of precious time, incurring
additional costs. As the documentation and other relevant
project artefacts decay [11], to understand the current state of
the application before implementing a change the designated
developer has to go through the complex task of understanding
the code. It is stated that humans understand a program when
they can describe its characteristics like its architecture,
operational context and relations to its domain in qualitative
terms other than those used by the program syntax [4].
Comparison between computer and human interpretation of
concepts confronts us with human oriented terms, which may
be informal and descriptive (e.g. "deposit the amount into the
savings account"), as opposed to compilation unit terms that
tend to be more formal and structured (e.g. "if (accountType
== ‘savings’) then balance += depositAmount").

During application development, it would have been ideal
for program comprehension to use the same words found in
the requirements documentation when declaring identifier
names. However, the developers often choose the abbreviated
form of the words and names found in the text documentation
as well as use nouns and verbs in compound format to capture
the described actions [22]. Moreover, the layered multi-tier
architectural guidelines better known as Parnas’ information
hiding principle [5], which advocates the separation of
concerns, causes the concept implementations to be scattered
across the application. This design principle leads to loss of
information and creates challenges during maintenance when
linking the application source code to the text documentation.
In addition, the separation of concerns coupled with the
abstract nature of Object Oriented Programming, obscures the
implementation and creates additional complexity for
developers during comprehension tasks [6].

Generally, program comprehension during software
maintenance can cause additional effort for those developers
who have little domain knowledge. Therefore, we are
interested to see whether domain knowledge such as the
vocabulary of domain-specific concepts could help with
program comprehension tasks. To this end, we choose two
software applications of the same domain to compare how the
domain concepts correlate across various project artefacts. Our
aim is to identify the opportunities of using the vocabulary in
artefacts to reduce the program comprehension overhead. For
instance, the clues obtained from the vocabulary of the
application domain can be used to trace a change request to
the source code. Compared to existing work on traceability

between code and technical documentations, our unique
contribution is in using the concepts derived from the trade
standard and the user guide. More precisely, we attempt to
answer the following research questions:

RQ1: What is the adherence of two conceptually related
applications to the domain concepts specified by Basel-II?

RQ2: How does the degree of frequency among the common
concepts correlate across the project artefacts?

RQ3: What is the vocabulary similarity beyond the domain
concepts, which may contribute towards code comprehension?

RQ4: How can the vocabulary be leveraged when searching
for concepts to find the relevant classes for implementing
change requests?

RQ5: What is the impact on the search results of class names
or change requests not reflecting the domain concepts?

In answering these research questions, we compared the
project artefacts of two conceptually related applications
addressing the same Basel-II Accord1 in the finance domain.
One of these applications is propriety, whose artefacts
vocabulary has been studied in our preliminary work [7]. The
other application is open-source, which is fortunate, as
datasets of finance domain are seldom made available to the
public. This enabled us to perform the designed study. Our
analysis helps utilise domain vocabulary across the project
artefacts of the two conceptually related applications in
program comprehension tasks.

The rest of this paper is organized as follows: Section II
describes related work in the literature, Section III describes
our data collection procedure and analysis steps, Section IV
presents our results in answering the five research questions,
discusses their implications to program comprehension and the
threats to validity. Finally Section V concludes with additional
remarks.

II. RELATED WORK
 How vocabulary is distributed amongst the program

elements of an application as well as recovering traceability
links between source code and textual documentation has been
recognised as an underestimated area [8]. It is claimed that due
to source code reflecting only a fraction of the concepts being
implemented explicitly, one cannot solely rely on the source
code as the single source of information [9]. On assessing the
relevance of program identifiers in legacy systems, Anquetil et
al. [10] argued that so-called "standard" naming conventions
for program identifiers are misleading because conventions
imply that an agreement between software developers exists.
However, Feilkas et al. [11] exposed that the developers
follow one another to keep a unified standard in development
projects. We investigate further in an environment where
recognisable names are used, if the change request and the

domain concept terms result in higher quality of traceability
between the source code and the text documentation.

Abebe et al. [12] present a study on the evolution of the
source code vocabulary – words extracted from the comments
and code identifiers – for two evolving software applications.
The study analysed the history of both applications and
measured many attributes. Among the most relevant ones to
our study are (1) the type of relations between the individual
vocabularies and (2) what the most frequent terms refer to. It
is concluded that in case of (1) the vocabulary extracted from
the source code file names resulted in having the highest
commonality with those found in the comments, and in case of
(2) simple frequency analysis of the terms indicated that the
frequent terms are related to domain concepts. We also
analyse the commonality and the frequency of the vocabulary,
but we go further in our investigation: we compare the
vocabulary of different artefacts beyond code, and check
whether the concepts can be used to map change requests to
the source code files to be changed.

In that, our work is similar to the efforts of Antoniol et al.
[13]. Their aim was to see if the source code classes could be
traced back to the functional requirements. The terms from the
source code were extracted by splitting the identifier names,
and the terms from the documentation were extracted by
normalising the text using transformation rules. They created a
matrix listing the classes to be retrieved by querying the terms
extracted from the text document. The method relied on
probabilistic and vector space information retrieval and ranked
the documents against a query. Applying precision and recall
validated their results. Although the authors compare two
different retrieval methods (vector space and probabilistic),
they conclude that semi-automatically recovering traceability
links between code and documentation is achievable despite
the fact that the developer has to analyse a number of sources
during a maintenance task to get high values of recall. Our
work differs in two main ways. First, it is geared towards
maintenance, because we attempt to recover traceability
between change requests and source code classes. Second, we
improve the precision of the search by using project specific
vocabulary and stop-word filtering, instead of grammar stop-
words (frequently occurring function words without domain
meaning, e.g. ‘a’, ‘be’, ‘do’, ‘for’).

Recently, Abebe et al. [14] presented an approach that
extracted domain concepts and relations from program
identifiers using natural language parsing techniques. To
evaluate effectiveness for concept location, they conducted a
case study with two consecutive concept location tasks. In the
first task, only the key terms identified from the existing bug
reports were used to formulate the search query. In the second,
the most relevant concept and its immediate neighbour from a
concept relationship diagram were used. The results indicate
improved precision when the search queries include the
concepts. In our study, we also perform concept location tasks
using the identified concepts referred by the bug reports,
referred to the change requests (CRs). However we have found
situations where the relevant concept terms are not adequate
enough to retrieve the classes affected by a CR thus we

1. http://www.bis.org

demonstrate the use of CR vocabulary together with the
relevant concept terms, additively rather than independently
from each other to achieve improved search results.

III. DATA PREPARATION
We analysed the source code of two industrial financial

applications, one open source (OSS), referred to as Pillar-One,
and one proprietary, due to confidentiality referred to as Pillar-
Two. Both applications implement the financial regulations for
credit and risk management defined by the Basel-II Accord.
Basel-II (otherwise know as Solvency-II) is the second
agreement of the Basel Committee on Banking Supervision
concerning the international banking laws and regulations. The
recommendations of Basel-II are grouped under 3 categories
[15]. The first one deals with the management of main
financial risk areas such as credit, operational and market risk.
The second category focuses on additional risk types like legal
and liquidity risk. Finally, the third category provides a
framework for dealing with minimum capital requirements in
credit business to manage and reduce the financial risk by
controlling any risk exposures.

Pillar-One2 is a client/server application with two main
modules developed in Java and Groovy by Munich Re (a re-
insurance company). Since Pillar-One’s launch in 2008, two
additional insurance companies and an open community of
developers are involved in the maintenance and further
enhancements. The application consists of 5,593 project
artefacts comprising source code, configuration, JSP and
HTML files and text documentation, which are available from
a GIT3 online repository. The issues, like change requests and
problem descriptions, are maintained with JIRA4, a public
tracking tool.

Pillar-Two is a web-based application developed using the
Java programming language at our industrial partner’s site and
is not publicly available. It consists of four modules that are
clones of each other: they implement the same business
concepts, but differ in how the calculations are performed and
parameterized. It has been in production for 4 years and
consists of about 2,043 artefacts including source code,
configuration files, and user guide documentation. The
maintenance and further improvements are undertaken by five
developers, including in the past the first author, none of them
part of the initial team.

Change requests and preventative maintenance tasks i.e.
functionality enhancements and problem corrections for both
applications are documented in their respective issue tracking
and source control systems. The designated developer is
responsible for obtaining the assigned task and searching for
the relevant artefacts. So, prior to starting with maintenance, a
developer who is new to the technical architecture and
vocabulary of these two applications is faced with the
challenge of searching the application artefacts to identify the
relevant sections. For our source code analysis process, we

obtained the complete code, the user guide, and some CRs (27
for Pillar-One and 12 for Pillar-Two). The CRs for both
applications are those implemented for the latest production
release and are very terse, as shown in Table I.

TABLE I. SUB-SET OF CHANGE REQUEST DESCRIPTIONS

CR Description for Pillar-One
1619 unrecoverable error for error parameter poisson.
1733 Wiring concept for two-phase components should be extended
2024 Handling IllegalAcceessException in Packets and Collectors.
2081 Check usage of enum classes
2093 Quota event limit not implemented.
2163 GIRAModel not compatible with current master branch
2200 NPE when changing result views
CR Description for Pillar-Two

2002 Roundup export data to an importable excel format.
2003 Pdlgd export data to an importable excel format.
2010 Allow volatility values greather than 1.
2063 New reallocation method "Use Asset Diversified Risk".
2068 Show in both sub systems Market and PD/LGD all calculation states
2074 Dialog to distribute lambda factors similar to other module.
2081 Show approx. group values and diversification effects.

Subsequently, we utilised the list of financial domain

concepts identified in our previous study [7]. The domain
concepts are made up of multiple words (n-grams), e.g.
“Investment Market Risk”, “Market Value Calculation” and
“Lambda Factors”. We took the unique single words (like
‘market’ and ‘lambda’) occurring in the domain concepts as
basis for our source code analysis, which resulted in 45 unique
concept words. In addition, we have validated the final list of
concepts by searching for their occurrences in the official
Basel-II documentation.

We processed the obtained project artefacts as described
above, using our source code analysis framework tool called
ConCodeSe (Contextual Code Search Engine). ConCodeSe is
written in Java by extending our previous work and
implementing the state of the art data extraction, persistence
and search APIs (Lucene5, Hibernate6, JIM [16]) to process
Java and Groovy source code files. Figure 1 illustrates the
extraction, storage, search and analysis stages. In the top layer,
the contextual model creation and search services execute the
tasks automatically. The left hand side (1) represents the
extraction of component words from the source code using the
JIM tool and from the textual documentation using the Lucene
API. The middle part (2) shows the storing of the extracted
vocabulary in the Derby7 database using the Hibernate
persistence API. Finally in the analysis stage (3), the source
code analysis over the generated contextual database takes
place and the search results are saved in a spreadsheet file for
additional source code analysis tasks like the Spearman
correlation coefficients tests [17].

ConCodeSe Process Phases

Upon defining the location of the project artefacts and the
output in its configuration file, the process (i.e. data extraction,
storage and analysis) runs automatically. The ConCodeSe
process has two phases. The first phase creates a contextual

2. http://www.pillarone.org
3. https://github.com/pillarone
4. https://issuetracking.intuitive-collaboration.com
5. http://lucene.apache.org/java/docs/index.html
6. http://www.hibernate.org
7. http://db.apache.org/derby

model (corpus) by processing the project artefacts (i.e.
concepts, change requests, user guides and source code files)
and extracting the component words. In the second phase, the
analysis tasks such as searching for the frequency of concepts
occurring in the project artefacts and searching for the source
files implementing the concepts are performed over the
contextual model. The results of the analysis tasks are written
to an Excel sheet per task performed.

Vocabulary*
Extraction0

Vocabulary*
Persisting0

Database*
Access0
Hibernate0

Text*
Processing0

Lucene*Analyser0

ConCodeSe0
database0

CR,*Concept,0
User*Guide**
BaselCII*Guide0

Contextual*Model*Creation*and*Search*Services0

Java/Groovy*
Processing0
JIM*/*INTT0

0
Java/Groovy*
Source*Code*

Files0
0

Analysis*
Results*
Excel*file0

Vocabulary*
Search0

10 20 30

Vocabulary*
Analysis0

Fig. 1. ConCodeSe Data Extraction, Storage and Search.

Phase I – Contextual Model Creation
In this phase, the project artefact’s vocabulary is extracted

and saved in two stages: (1) source code vocabulary and (2)
textual documentation vocabulary processing.

1. Source code vocabulary processing stage.

In this stage, the first task processes Java and Groovy
source code files. The Java source files are parsed using the
source code mining tool JIM, which automates the extraction
and analysis of identifiers from Java source files. It parses the
source, extracts the identifiers and splits them into single terms
referred as component words. During this step, the identifiers
and metadata from the source code abstract syntax tree (AST)
are extracted and added to a central store, with information
about their location. Also, the tool INTT [18] within JIM is
used to tokenise and split the identifier names into single
words. INTT uses camel case, separators and other heuristics to
split ambiguous boundaries, digits and lower cases. The
extracted information i.e. the identifier names, their
tokenisation and source code location, is stored in a Derby
database.

In addition, this stage extracts the identifier vocabulary
from the Groovy source code files using steps similar to JIM
and INTT as described above. The extracted Groovy identifier
names and their component words are also stored into the
existing database tables whilst retaining referential integrity to
existing data. For example, if a component word extracted from

a Groovy source file already exists due to its occurrence in a
Java source code file then only an additional reference link to
its Groovy source code file is created. Otherwise the new word
is added to the database with a reference to its location in the
source code. The Table II shows the source code artefact size
of both applications.

TABLE II. SOURCE CODE ARTEFACT SIZE

 Pillar-One Pillar-Two
Source Code size (LOC) 254,913 80,571
 - Class files 2,631 337
 - Identifiers 12,257 4,246
 - Component words 40,156 13,922
 - Unique component words 2,215 683

2. Textual documentation vocabulary processing stage.

This stage extracts the words from the text files i.e. domain
concept lists, user guides and change requests. The extracted
words are stored in the contextual model. Once again, this
process also considers the referential integrity of the existing
data, for example if a word extracted from one of the text files
already exists in the database due to its occurrence in a Java or
a Groovy source code file then a reference link to the word’s
text file is created. Otherwise the new word is added to the
database with a reference to its text file. For this stage, we
developed a Java module in ConCodeSe using the Lucene
framework to analyse and tokenise the sentences into single
words. The module implements the Lucene’s Standard-
Analyzer class because it tokenises alphanumerics, acronyms,
company names, and email addresses, etc. using a JFlex-based
lexical grammar. It also includes stop-word removal. We used
a publicly available stop-words list8 to filter them out.

We saved the user guides as a text file to ignore images,
graphics, and tables. Confidential information, such as names,
email addresses and phone-numbers was then manually
removed from the text. Running our Java module over the user
guide, we obtained unique words and word instances as shown
in Table III. We did the same to extract the words from the
change requests, which resulted in a higher number of terms
because the CRs are forms containing fields for tracking
purposes e.g. ‘Priority’, ‘Assigned Date’ and ‘Defect Id’ are
repeated in all change requests. In case of the identified
domain concepts, the extraction and storage process resulted
in 45 unique concept words with 112 occurrences within the
concept descriptions document. Also processing the official
Basel-II documentation resulted in 4,726 unique words with a
total of 75,292 instances.

In addition, since the CRs were already implemented for
the versions of the applications being analysed, we have
identified the affected source codes files by manually analyzing
the source code repository commits. We have listed the
affected source code file names (208 for Pillar-One and 61 for
Pillar-Two) as referential link in the contextual model between
the CRs and the source code file names. Once all the textual
artefacts are processed and component words are stored and
cross-referenced, we performed word stemming. For this task,
we used Lucene’s PorterStemmer class to compute the word’s
stem by removing the common and morphological endings 8. http://armandbrahaj.blog.al/2009/04/14/list-of-english-stop-words

(a.k.a. inflections). This takes lexical variations into account,
e.g. words calculation, calculated, calculating etc. have the
stem ‘calcul’. We also linked the component words to their
stem words in the model. At the end of this phase the
contextual model is created with the component words acting
as referential link among the artefacts to provide strong
relational clues during source code analysis activities as
described next.

TABLE III. NUMBER OF WORDS IN TEXTUAL ARTEFACTS

 Pillar-One Pillar-Two
Words Total Unique Total Unique

Change Requests 1030 409 1,582 167
User Guide - UG 21,381 3,688 13,801 697

Phase II –Source code analysis.

In the second phase of our process, we developed a search
module in ConCodeSe using Java to run SQL queries to (1)
search for occurrences of the concepts in all four kinds of
artefacts (CRs, user guide, code and Basel-II documentation)
and (2) search for all classes that included the component
words matching the concepts found in CRs. For each search,
we performed exact match and then stem match to see if we
obtained more accurate results. In addition, for search (2), the
manually identified classes affected by each CR are used to
compute precision and recall of the search results. ConCodeSe
generates an Excel file with individual work sheets containing
information on (1) the contextual model data size (i.e. number
of packages, source files, identifiers, number of words etc.),
(2) the occurrences of concept words in the project artefacts,
(3) the precision and recall of finding the changed classes
given the change requests and their concepts, and (4) the word
occurrences for each of the project artifact. In ConCodeSe, the
results of the search module are measured by recall: measures
the completeness of the results and precision: measures the
accuracy of the results.

The complete processing (i.e. parsing, extracting, splitting,
storing, searching and creating the result file) of all four
project artefacts (i.e. source code files, change requests and
user guides) for both applications took 69 seconds on a dual
core iMac with 4GB memory. The resulting database size in
case of Pillar-One is 39MB, containing 4,826 unique
component words and 3,365 word stems. In case of Pillar-
Two, the resulting database size is 14.9Mb, containing 1,195
unique component words and 834 word stems. Although
ConCodeSe can process and store multiple artefacts of
multiple projects in one contextual model, for our source code
analysis purposes we have chosen to keep the models separate
for each project.

IV. ASSESSMENT OF RESEARCH QUESTIONS
We searched for the concept occurrences and the

vocabulary coverage of the terms across the project artefacts.
Using statistical Spearman tests, we demonstrate how the
concepts correlate in the two applications, which are
independent of one another but yet aim to implement the same
regulatory Basel-II Accord. In addition, we show the results of
searching for class names matching the concepts referred in

the CRs and how a developer leverages vocabulary while
executing a maintenance task.

RQ1: What is the adherence of two conceptually related
applications to the domain concepts specified by Basel-II?

Searching for exact occurrences of concepts in all four
project artefacts i.e. CRs, user guide (UG), source code (SRC)
and Basel-II documentation (BD – shared by both
applications), revealed that while each concept occurred in at
least one artefact, only 7 concepts occurred across all artefacts
in case of Pillar-One (see Table IV) and only 14 in case of
Pillar-Two. Due to space limitations Table IV shows the top
seven common concepts, sorted by their frequencies in the
CRs, and their respective frequencies in the other artefacts.

TABLE IV. COMMON CONCEPTS IN ARTEFACTS

Concept
.Pillar-One

CR UG SRC BD
Freq Rank Freq Rank Freq Rank Freq Rank

time 10 1 35 2 142 3 190 3
current 6 2 15 5 96 4 129 4

capital 3 3 20 3 46 5 1097 2

aggregated 2 4 7 6 42 6 11 7

correlation 1 5 4 7 3 7 38 6

index 1 6 20 4 470 2 42 5

risk 1 7 143 1 1849 1 2196 1
.Pillar-Two

market 32 1 605 1 561 2 513 2

value 24 2 198 7 481 3 271 3

calculation 14 3 513 2 56 12 102 8

risk 12 4 259 4 411 4 2196 1

asset 8 5 49 11 173 7 190 4

diversified 7 6 37 13 14 13 15 14

base 3 7 104 8 170 8 29 13

Next, we searched again for concepts in the terms and

words extracted from the artefacts, but using stemming. This
resulted in 4 additional concepts: label, line, receiver and
value, to be retrieved from the Pillar-One project artefacts. In
case of Pillar-Two, the stemming did not increase the number
of common concepts between the artefacts but it changed the
number of instances found. For example, there are 56 exact
occurrences of the concept ‘calculation’ in the source code,
but searching for the stem ‘calcul’ returned 29 additional
instances for the terms calculate, calculated, calculating,
calculations and calculator. Also the stemming consolidated
concepts rule and rules into rule, which resulted in 44
concepts to be considered during the search.

Furthermore, we noticed that 7 out of 45 concepts resulted
in null occurrence in the BD. Upon investigating the reasons,
we found that this is due to the naming conventions used in the
documentation, for example the concept ‘pdlgd’ is referenced
as ‘pd/lgd’ and ‘subgroup’ as ‘sub-group’ in the BD. Overall,
the distribution of the 45 concepts among the artefacts is as
given in Figure 2.

8

11 3

CR

UG SRC

Pillar-One Pillar-Two

CR

SRC UG

8
20

16

17

Fig. 2. Concept Distribution among artefacts.

Subsequently, we measured the vocabulary coverage of
Basel-II Accord in both applications and searched the
occurrence of the Basel-II documentation (BD) words in the
three project artefacts i.e. CRs, user guide (UG) and source
code (SRC) of both applications. We extracted 4,726 unique
words from the BD and 2,771 stems. Once again each word
occurred at least in one artefact but only 132 words occurred
in all three artefacts in case of Pillar-One and only 49 words
occurred in case of Pillar-Two. After stemming, the BD word
occurrence in Pillar-One is increased by 16% to 153 words
and in Pillar-Two it increased by 35% to 66 words. Since the
common vocabulary coverage in all three artefacts is low, 11%
and 8% respectively, we wanted to see whether the UG and
SRC revealed the terminology used in the guideline drawn out
by the Accord. We searched the occurrence of the BD
stemmed words in the user guide and source code of both
applications. We found identical number of word occurrences
in the user guides and source code of both applications. As
Table V show, the user guides share 308 common BD words
and the source codes share 221 common BD words.

TABLE V. COMMON BD VOCABULARY IN ARTEFACTS

 Exact Stemmed UG SRC
Pillar-One 132 153 308 221
Pillar-Two 49 66 303 221

We expected that the domain concepts identified in our
previous study [7] to occur in the official Basel-II
documentation (BD). Our search found 38/45 or 87% of the
concepts in BD, which supported the validity of the manually
identified concepts. Second we anticipated these concepts to
exist in the OSS application Pillar-One since it addresses the
same domain as well. We searched the occurrences of the
concepts and indeed found that the project artefacts of Pillar-
One explicitly include the concepts (see Fig. 2), which
confirmed that both applications implement the concepts of
the highly regulated Basel-II accord. Also, we discovered 4
common concepts: risk, index, value and time that occurred in
all project artefacts of both applications. This indicates that the
two independent applications with core functionality for
calculating financial risk based on index values over
predefined time periods reflect the key domain concepts
described in the official documentation.

RQ2: How does the degree of frequency among the common
concepts correlate across the project artefacts?

We wanted to identify if the concepts also have the same
degree of importance across artefacts, based on their
occurrences. For example, among those concepts occurring
both in the code and in the guide, if a concept is the n-th most
frequent one in the code, is it also the n-th most frequent one
in the guide? We applied Spearman’s rank correlation
coefficient (CC), to determine how well the relationship
between two variables in terms of the ranking within each
artefactual domain can be described [17]. The correlation was
computed pair-wise between artefacts (see the Table VI
headings), over the instances of the concepts common to both
artefacts. Table VI shows the results obtained using the online
Wessa statistical tool9.

In case of Pillar-One, for both search types (exact and
stem), the correlation between CRs and the other three
artefacts (UG, SRC and BD) is low and not statistically
significant (p-value > 0.05). This is because there are very few
common concepts with exact occurrences in CRs. However,
the correlation among UG, SRC and BD without CRs is
stronger and statistically significant (p-value < 0.05). For stem
search, the correlation decreases in most cases.

TABLE VI. SPEARMAN CORRELATION OF CONCEPTS AMONG ARTEFACTS

Correlation
Between =>

CR vs
UG

CR vs
SRC

CR vs
BD

UG vs
SRC

UG vs
BD

SRC
vs BD

P1- Normal

Correlation 0.169 -0.036 0.214 0.884 0.848 0.643

Probability 0.674 0.928 0.596 0.030 0.037 0.114

P1- Stem
 Correlation -0.175 -0.018 0.073 0.782 0.536 0.207

Probability 0.575 0.952 0.818 0.013 0.089 0.509

P2- Normal

Correlation 0.414 0.183 0.558 0.525 0.418 0.421

Probability 0.133 0.503 0.043 0.057 0.131 0.128

P2- Stem
 Correlation 0.635 0.178 0.664 0.553 0.574 0.298

Probability 0.021 0.516 0.016 0.046 0.038 0.280

In case of Pillar-Two for exact search, the correlation is

low and not statistically significant except between CR and
BD as well as UG and SRC. For stem search, the correlation
between CR and UG as well as UG and BD becomes stronger
and statistically significant. On the contrary to Pillar-One
where stemming increased the number of matched words, the
stemming of words into their root increases their instances in
the artefacts. This changed the relative ranking of the common
concepts. The Spearman correlation became stronger and
statistically more relevant, as Table VI shows. Only the
correlation between CRs and SRC as well as SRC and BD
remains insignificant.

We found that only 25/45 or 56% of concepts occur both in
the code and documentation in case of Pillar-One and 36/45 or
80% in case of Pillar-Two. Since the source code is consulted 9. http://www.wessa.net/rankcorr.wasp

during maintenance, this lack of full agreement between both
artefacts may point to potential inefficiencies during
maintenance. However, using stemming to account for lexical
variations, the common concepts correlate well (with a high
statistical significance of p=2*10-4) in terms of relative
frequency, taken as proxy for importance, i.e. the more
important concepts in the user guide tend to be the more
important ones in the code. This good conceptual alignment
between documentation and implementation eases
maintenance, especially for new developers. The weak
conceptual overlap and correlation between CRs and the other
two artefacts is not a major issue for us since CRs are usually
specific for a particular unit of work and may not necessarily
reflect all implemented or documented concepts.

RQ3: What is the vocabulary similarity beyond the domain
concepts, which may contribute towards code comprehension?

We searched the contextual model of Pillar-One using the
source code words of Pillar-Two, excluding the concept
words. We identified 428 common words in both applications
with varying frequency. We also cross-checked the validity of
the identified common words by repeating the search over the
contextual model of Pillar-Two using the source code words
of Pillar-One and obtained the same number of common
words. The common words search results indicated that 63%
of Pillar-Two’s vocabulary exists in Pillar-One and conversely
only 18% of Pillar-One’s vocabulary exists in Pillar-Two.

Subsequently, we wanted to find out if the common
vocabulary also contributes towards ease of code
understanding by developers. Since identifiers are made up of
compound words, we looked at overall vocabulary of all the
identifiers and not just component words that occur in the
source. After all, even if there is overlap in the component
words, one application might combine them in completely
different ways to make identifiers that other developers will
find confusing. Indeed, both applications combine the words
differently as we found only 37 common identifiers between
the applications. As shown in Table VII, the concept ‘Market
Value’ is used in Pillar-One on the left-most position of an
identifier name, whereas the same concept is used in Pillar-
Two on the right-most position. Based on our experience of
project naming conventions, it is found that method
parameters are prefixed with “p” as in “pBase” compared to
”parmBase” in Pillar-One.

TABLE VII. SAMPLE OF IDENTIFIER SIMILARITY

Pillar-One marketValueOfBods getLabelText parmBase
Pillar-Two longTermMarketValue getLabelName pBase

Since both applications are about the same domain, we

wanted to find out if the developers have some common
vocabulary that is outside the domain concepts. We analysed
the vocabulary coverage of the BD among the project artefacts
of both applications and found that the common vocabulary
coverage reveals the developers’ compliance with the official
documentation (see Table V). Although both applications
combine the words differently on the identifier names (only 37

common ones), comparing the rest of the identifiers based on
our industrial experience with Pillar-Two, revealed similarities
indicating that the developer of one application may easily
navigate the code base of the other one (see Table VI). This
indicates two good pointers for maintenance (a) full business
vocabulary coverage, and (b) in both projects abbreviations
are not required to retrieve such vocabulary from the artefacts.

RQ4: How can the vocabulary be leveraged when searching
for concepts to find the relevant classes?

Next, we searched each application for class names
matching the concept words referred by the CRs. We started
our experiments with Pillar-Two first because we were able to
identify the concepts addressed by each CR based on our
industrial experience hence allowing us to accurately validate
and calibrate the search techniques within our tool.

RQ4.1. Pillar-Two:
For each search, we performed exact match and then stem

match to see if we obtained more accurate results. We
computed the precision and recall of the results by comparing
the retrieved classes to those that should have been returned,
i.e. those that were affected by implementing the CR. Exact
CR concept search had very high recall with very low
precision. Since a stemmed search returns a superset of exact
search, we expected it to deteriorate precision and to improve
recall. Table VIII shows the subset results of the stemmed
search; indeed, the precision did deteriorate, e.g. for CR #2074
it declined from 19.05% to 16.67%. The reason for this is that
the stem of ‘factors’ is ‘factor’ and of ‘value’ is ‘valu’,
resulting in 8 additional classes to be retrieved. The stemmed
search did not improve recall either, e.g. no additional relevant
classes were found for CRs #2002 and #2003 thus precision
and recall remained 0%.

TABLE VIII. PILLAR-TWO STEM CONCEPT SEARCH RESULTS (SUBSET)

CR

stemmed concepts
searched

relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

2002 roundup, valu 15 0 0 11 0.00
2003 valu 6 0 0 11 0.00
2010 volatil, market, valu 6 6 100.00 142 4.23
2063 index, asset, market 7 6 85.71 161 3.73
2074 factor, lambda, valu 6 4 66.67 29 16.67
2081 group,roundup,helpr 6 0 0 11 0

We looked further at the reasons for low precision. In the

case of CR #2002 (0% recall and precision), the request is
about a generic action (exporting) (see Table I) on the concept
(roundup), and as such the concept does not appear in the
relevant class names. Other CRs involve the frequent concept
‘market’ (see Table IV), which due to the project naming
conventions occurs in almost every class name of the module,
causing many false positives.

We asked an additional research question: How can we
tailor the search to improve precision, so that developers have
to inspect fewer classes for relevance?

We prepared a customized search for a subset of the CRs
from Table I. First, we searched the classes using the actual
words of the CR, rather than its associated concepts, because
they better describe the concept’s aspects or actions to be
changed. However, the CR and the class identifiers may use
different words. For example, the CR #2081 term ‘mask’
refers to the GUI, which is implemented by the Helper pattern,
explicitly referred to in class names. Hence we introduced a
project specific mapping mechanism, which in our case
includes ‘mask’ → ‘helper’. Finally, we discarded from
searches project specific stop-words by automatically selecting
the two most frequently occurring concepts, ‘market’ and
‘value’ for Pillar-Two and ‘time’ and ‘current’ for Pillar-One
(Table IV). The new results obtained are shown in Table IX.
We see that precision increased by 100% for CRs #2010 and
#2063 compared to Table VIII, while the impact on recall
remained minimal and the previously not detected classes for
CR #2002, #2003 and #2081 are also retrieved.

TABLE IX. PILLAR-TWO SEARCH RESULTS WITH STOP WORDS (SUBSET)

CR

CR vocabulary
searched

relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

2002 roundup,data,export 15 15 100.00 74 20.27
2003 pdlgd,data,export,… 6 6 100.00 79 7.59
2010 volatility,… 6 5 83.33 81 6.17
2063 asset,diversified,… 7 5 71.43 81 6.17
2074 factor, lambda, … 6 4 66.67 95 4.21
2081 group,roundup,helpr 6 1 16.67 35 2.86

RQ4.2. Pillar-One:
In case of Pillar-One, we repeated the same search tasks as

for Pillar-Two (exact match followed by stem match) and
obtained 0.00% recall and precision. This indicated that either
the action-oriented nature of CRs did not indicate clues to the
concepts being addressed directly or the class names of Pillar-
One did not reflect concept words explicitly. So we searched
again using the CR vocabulary and also, we assigned a weight
to each resulting class based on the query words matching the
terms found in a class name. For example, given a query with
words “abc” and “xyz”, if the found classes are AbcXyzClass
and XyzClass, then the class weights are 2 and 1 respectively
because class AbcXyzClass has both of the queried words in its
name. The weight is used to rank the classes in the result list,
which allowed us to focus only on the top 30 classes since the
developers are unlikely to go through any longer lists. We
found relevant classes matching 5 CRs as Table X shows.

TABLE X. PILLAR-ONE SEARCH RESULTS WITH CR WORDS (SUBSET)

CR

CR vocabulary &
concept searched

relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

1619 lambda 24 0 0 0 0
2093 quota,feature,event 6 2 33.33 4 50.00
2163 master,comp,plugin 60 6 10.00 15 40.00
2169 section,config,pane 14 6 42.86 13 46.15
2200 crash,open,aggregat 13 6 46.15 24 25.00
2081 quota,speific,feature 6 2 33.00 4 50.00

The improvement in recall inspired us to experiment
further by repeating the search but this time considering all of
the words extracted from the identifiers contained in each
class in addition to the words extracted from the class name.
For this task we created an indexed contextual model of class
names and all their associated words using Lucene’s Vector
Space Model (VSM). In VSM, each document and each query
is mapped onto a vector in a multi-dimensional space, which is
used for indexing and relevance ranking [19]. In our case, each
class with its list of words is treated as a document in the
VSM. We searched the indexed “class by words” document
model using Lucene’s query API to take full advantage of the
VSM. As shown in Table XI, exact search discovered the
classes for CR #1619. The stem search did not expose any
additional classes, except for a slight drop in precision values
due to the stem returning a superset of exact search as
described earlier. The search with CR vocabulary in addition
to concept words resulted in discovering classes for 2
additional CRs #1733, #2024. Overall, we recovered
traceability links between the CRs and the affected classes for
8 CRs by combining the vocabulary of the project artefacts.

TABLE XI. PILLAR-ONE SEARCH RESULTS USING VSM (SUBSET)

CR

Concept searched
Vocabulary srchd

relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

1619 lambda 24 2 8.33 13 15.38
1733 multi,phase,comp… 8 1 12.50 276 0.36
2024 save,collect,value,... 4 3 75.00 163 1.84

We searched for the classes using the concepts referred by

the CRs and obtained differentiating results. We found that in
case of Pillar-Two, mapping a CR’s wording to domain
concepts and using those to search for classes to be changed, is
enough to achieve very good recall, but precision is poor and
in case of Pillar-One both recall and precision remains low.
Upon investigating the reasons for this, we discovered that in
Pillar-Two the class names reflect the concepts and the CR
descriptions have very good concept word coverage while this
is not the case in Pillar-One. Also we found that overloading
the class names with concept like project specific words cause
high recall and low precision on one hand and on the other
hand having no indication to the concepts referred by a CR
produce no results. Since CRs may come from a group of
people who are unfamiliar with the vocabulary used in the
code and in the documentation, we recommend CR documents
to contain a section for describing the relevant concepts that
the current CR is referring to.

RQ5: What is the impact on the search results of class names
or CRs not reflecting the domain concepts?

Since we were able to recover at least one traceability link
for all of Pillar-Two CRs but not for Pillar-One, we have
investigated the reasons for this and found out that Pillar-Two
class names and CR descriptions reflect the concepts more
explicitly than Pillar-One as illustrated in the following
example. Table XII shows two CRs concerning the concept
“lambda”. In case of Pillar-Two CR #2074, the four classes

are found because these class names include the searched
concept.

However, in case of Pillar-One CR #1619, the affected
classes are not detected during the exact concept search
because the class names do not include the concept word being
searched. After extending the search, in case of Pillar-One, to
also consider the identifier names existing within the body of a
class, the exact search found the affected classes based on the
identifier names.

TABLE XII. CLASS NAMES AND IDENTIFIERS EXAMPLE

CR Concept Affected Classes Identifier

2074
(P2)

factors,
lambda,
value

K4MarketHelperDistributeLambda
K4MarketRiskLambda,
K4MarketProcessorCopyLambda,
K4MarketHelperCopyLambda

calculateLambdas,
readLambda,
hasLambdaDiversified,
lambdaFactorSet

1619
(P1)

lambda LognormalTypeIIParetoDistributio
TypeIIParetoDistribution

alphaAndLambda,
muAndLambda

Furthermore, in case of Pillar-One, the recall and precision

values for exact and stemmed search results were 0.00% (see
RQ4.2). Upon investigating the reasons we found in addition
to class names not reflecting the concepts, the terse CR
descriptions also fail to reflect most of the concepts (see Table
I). This is also illustrated in Fig. 2 where only 8/45 or 18% of
the concepts occur in Pillar-One CRs, while Pillar-Two’s CRs
include double that amount.

At this stage we asked another research question: How
would a developer leverage the quantitative information to
comprehend an application?

We asked a Pillar-Two developer to re-implement Pillar-
One CR# 2031 “Net reserve risk uses gross numbers”. To
obtain a list of candidate classes as initial starting point, he
compared the CR terms against the concept occurrences (see
Table IV) and searched for the class names containing the
term “risk”, which returned no results as the class names in
Pillar-One do not contain the concept “risk”. So he considered
additional CR terms based on their ranking in the source code
obtained by searching the occurrences of the Basel-II
documentation (BD) vocabulary across the project artefacts of
Pillar-One in answering the RQ1 (see Table XIII).

TABLE XIII. BD VOCABULARY OCCURRENCES IN PILLAR-ONE (SUBSET)

BR words
.Pillar-One

CR UG SRC
Freq Rank Freq Rank Freq Rank

reserve 11 1 110 13 309 19
gross 2 23 135 3 107 30

numbers 1 56 49 23 48 41

The next candidate CR term to use was reserve, which

resulted in 57 classes. Next, he decided to narrow down the
search to include those classes that are of relevance for the
CR. He extended the search to also consider the terms
contained in the body of the classes. Based on Table XIII, he
selected the next highest ranked SRC term gross from the CR
description to be searched in the body of the candidate classes,
which narrowed the results to only 6 classes. He considered 4
of them to be irrelevant as their names indicated these classes

to be configuration related and decided to focus on the
remaining two as candidate classes. Investigating the body of
the two classes revealed program logic for calculating “gross
claims” and instances of the term gross occurring together
with the number 1 ranking term claim. Subsequently, he
continued by searching for the classes referring to the two
candidate ones but we decided not to investigate further since
our aim was only to demonstrate the use of quantitative
analysis to aid developers in discovering the relevant classes.

Both recall and precision can be improved by (a) using the
actual CR vocabulary, (b) mapping some of it to different
terms used in class identifiers, (c) ignoring frequent concepts,
which act as stop-words and (d) considering all the words
extracted from a class during the search. We note that such
project specific, simple, and efficient techniques can
drastically reduce the false positives a developer has to go
through to find the classes affected by a CR. We also note that
in projects like this, where class identifiers are more
descriptive than abbreviations, the use of stem search
decreases precision, while not increasing recall. In addition we
observed that developers would benefit if CRs provide a
section with ranked keywords to be used when searching the
relevant program elements during maintenance.

Threats to Validity
A single developer demonstrated the use of quantitative

analysis results in discovering the relevant classes. This threat
to internal validity will be addressed by conducting controlled
experiments involving additional developers. We only used
single-word concepts, while business concepts are usually
compound terms. We searched the project artefacts of Pillar-
One using the concepts defined in our previous study [7]. In
fact, it is feasible to have other concepts that are not reflected
in our list. Also, the relative frequency was taken as the proxy
for importance.

These threats to construct validity will be addressed in
future work: we will see if term co-occurrence improves
precision and will elicit concepts from the official Accord. The
characteristics of the projects (the domain, the terse CRs, the
naming conventions, the kind of documentation available) are
a threat to external validity. We catered for this by repeating
the experiments with two different applications addressing the
same financial domain for comparison. In our future work we
aim to consider additional applications from other domains.

V. CONCLUDING REMARKS
In this study we investigated the vocabulary of two

independent financial applications covering the same domain
concepts. We found that artefacts explicitly reflect the domain
concepts and the paired artefacts of these applications have
good conceptual alignment. This alignment helps facilitate
program comprehension when searching for classes affected
by given change requests (CRs). Both applications adhere with
the vocabulary of the Accord and reveal good overlap in-
between, indicating a full coverage of the business vocabulary.
Although the descriptive identifiers support high recall of
classes affected by CRs, the low precision may be detrimental
to maintenance. CR descriptions or class names do not always

reveal the concepts, and class names are found overloaded
with concept terms due to naming conventions, which may
account for the high recall/low precision phenomena.

The importance of descriptive and consistent identifiers for
program comprehension has been extensively argued for in the
academic [8] and professional literature [20]. Our study
showed that despite good naming conventions and vocabulary
coverage, it is challenging to find the classes referred by a CR.
Although reflecting the daily tasks of the developers, CRs of
action oriented nature are not a better source for traceability
than user guides and trade standards. It is found that these two
types of documentations describe the usage scenarios and may
account for the improved traceability.

This work is an exploration of the vocabulary relations
between artefacts and the concepts. It illustrates that even in
highly regulated environments naming conventions cause
overloading and overcloud program comprehension, hence
providing further evidence that one cannot rely on the code as
the single source of information. This in turn highlights the
need for better programming guidelines and tool support
beyond enforcing naming conventions within the code because
naming conventions alone do not guarantee a good traceability
between the concepts and other project artefacts. In our future
work, we will consider constructing a contextual model as the
consistent set of clues to aid program comprehension.

ACKNOWLEDGMENT
We thank our industrial partner in Germany, for providing

the artefacts and their input on diverse information required.
We also thank Simon Butler for his suggestions on an earlier
draft of the paper.

REFERENCES
[1] G. Pigoski, T. M.: “Software maintenance”; In: Guide To The

Software Engineering Body Of Knowledge; Los Alamitos, CA:
IEEE Computer Society Press. Trial Version 1.00, May, 2001.

[2] J. W. Davison, D. M. Mancl, and W. F. Opdyke, “Understanding
and addressing the essential costs of evolving systems,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 44-54, 2000.

[3] T. A. Corbi, “Program understanding: Challenge for the 1990s,”
IBM Systems Journal, vol. 28, no. 2, pp. 294 -306, 1989.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The
concept assignment problem in program understanding,” in
Proceedings of the 15th Int’l Conf. on Software Engineering,
1993, pp. 482-498.

[5] D. Parnas, "On Criteria To Be Used in Decomposing Systems
Into Modules," Communications of the ACM, 14(1):221-227,
April 1972.

[6] D. Shepherd, L. Pollock, and K. Vijay-Shanker, "Towards
Supporting On-Demand Virtual Remodularization Using
Program Graphs", AOSD 2006, ACM, pp. 3-14.

[7] T. Dilshener and M. Wermelinger, “Relating developers’
concepts and artefact vocabulary in a financial software
module,” in Software Maintenance, 2011 27th IEEE Int’l Conf.
on, pp. 412-417.

[8] F. Deissenböck and M. Pizka, “Concise and consistent naming,”
in Proc. 13th Int’l Workshop on Program Comprehension, 2005,
pp. 97– 106.

[9] F. Deissenböck and D. Ratiu, “A unified meta-model for
concept-based reverse engineering,” in In Proceedings of the 3rd
Int’l Conf. Workshop on Metamodels, Schemas, Grammars and
Ontologies (ATEM’06), 2006

[10] N. Anquetil and T. Lethbridge, “Assessing the relevance of
identifier names in a legacy software system,” in Proceedings of
the 1998 conference of the Centre for Advanced Studies on
Collaborative research, 1998, pp. 213-222.

[11] M. Feilkas, D. Ratiu, and E. Jurgens, “The loss of architectural
knowledge during system evolution: An industrial case study,”
in Program Comprehension, 2009 IEEE 17th Int’l Conf. on, pp.
188-197.

[12] S. L. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol,
“Analyzing the Evolution of the Source Code Vocabulary,”
Software Maintenance and Reengineering, 2009. CSMR '09.
13th European Conference on, pp. 189–198.

[13] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. Merlo,
“Recovering traceability links between code and
documentation,” IEEE Transactions on Software Engineering,
28:970-983, 2002.

[14] S. L. Abebe and P. Tonella, “Natural Language Parsing of
Program Element Names for Concept Extraction,” in Program
Comprehension, 2010 IEEE 18th Int’l Conf. on, pp. 156-159.

[15] Basel II: International Convergence of Capital Measurement and
Capital Standards: A Revised Framework - Comprehensive
Version, June 2006, http://www.bis.org/publ/bcbs128.htm.

[16] S. Butler, M. Wermelinger, Y. Yu, H. Sharp, “Exploring the
influence of identifier names on code quality: an empirical
study,” in 14th European Conf. on Software Maintenance and
Reeng., 2010, pp. 159–168

[17] S. Boslaugh, P. Watters, “Statistics in a nutshell”, O’Reilly,
2008, pp. 176-179.

[18] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving
the tokenisation of identifier names,” in Proc. European Conf.
on Object-Oriented Programming, LNCS 6813, Springer-
Verlag, 2011, pp. 130-154

[19] G. Salton and C. Buckley, “Term-weighting approaches in
automatic text retrieval,” Information Processing &;
Management, vol. 24, no. 5, pp. 513-523, 1988.

[20] R. C. Martin, “Clean Code: A Handbook of Agile Software
Craftsmanship”, Prentice Hall, 2008, pp. 17-30.

[21] K. H. Bennett and V. T. Rajlich, “Software maintenance and
evolution: a roadmap,” in Proceedings of the Conference on The
Future of Software Engineering, 2000, pp. 73-87.

[22] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What is in a
Name? A Study of Identifiers,” Proc. 14th Int’l Conf. on
Program Comprehension, IEEE, 2006, pp. 3-12

