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Abstract—In order to comprehend an unfamiliar application 

while implementing a change request, software developers refer 
to all available project artefacts. Although application domain 
vocabulary plays an essential role in understanding these 
artefacts, to our knowledge, little has been studied on whether 
they adhere to the domain vocabulary. In this paper we analyse 
two applications that implement the concepts defined by the 
Basel-II Accord between financial institutions.  We had access to 
the user guide, the source code, and some change requests of each 
application. By analysing the artefacts’ vocabulary and the 
Accord text, we identify the common domain concepts and their 
correlation to the project vocabulary. We found good conceptual 
alignment among the artefacts. Searching for relevant classes, 
given a change request, has shown that change requests or class 
names do not always explicitly reveal the concepts. Specifically, 
project conventions cause class names to be overloaded with 
concept-like terms and may impact the recall and precision of the 
results, suggesting that leveraging the vocabulary from project 
artefacts can improve the overall accuracy of the search results 
and benefit program understanding. We discuss the implication 
of our results for software maintenance.  

Index Terms—business software maintenance; domain 
vocabulary; change requests; empirical study; concept relations.  

I. INTRODUCTION 
As valuable and strategic assets to companies and playing a 

central role for the business, software applications require 
continued and substantial effort to be maintained. From the 
estimated 80% of overall maintenance efforts, 40-60% is 
dedicated to comprehension [1]. According to Davison et al. 
[2], even experienced programmers face tremendous learning 
curves to understand the application domain when they move 
to work on another area within their current projects. It is 
argued that during maintenance there is a tendency of 60-80% 
of time being spent on discovering, which counts towards 20% 
of overall project costs. Corbi et al. [3] identified that 
understanding a program is an important activity for a 
developer to perform the designated maintenance tasks and 
claimed that such activities are treated as transparent and most 
of the time they go unmentioned.  

Often when the original developers left the project a long 
time ago, software companies turn towards third-party 
developers to take over the maintenance tasks [21]. The 
impermanent nature of their job and a high turnover among 
these developers cause the knowledge of the applications to 
move further away from its source. Each time a new developer 
is designated to perform a maintenance task, the associated 

high learning curve results in loss of precious time, incurring 
additional costs. As the documentation and other relevant 
project artefacts decay [11], to understand the current state of 
the application before implementing a change the designated 
developer has to go through the complex task of understanding 
the code. It is stated that humans understand a program when 
they can describe its characteristics like its architecture, 
operational context and relations to its domain in qualitative 
terms other than those used by the program syntax [4]. 
Comparison between computer and human interpretation of 
concepts confronts us with human oriented terms, which may 
be informal and descriptive (e.g. "deposit the amount into the 
savings account"), as opposed to compilation unit terms that 
tend to be more formal and structured (e.g. "if (accountType 
== ‘savings’) then balance += depositAmount").  

During application development, it would have been ideal 
for program comprehension to use the same words found in 
the requirements documentation when declaring identifier 
names. However, the developers often choose the abbreviated 
form of the words and names found in the text documentation 
as well as use nouns and verbs in compound format to capture 
the described actions [22]. Moreover, the layered multi-tier 
architectural guidelines better known as Parnas’ information 
hiding principle [5], which advocates the separation of 
concerns, causes the concept implementations to be scattered 
across the application. This design principle leads to loss of 
information and creates challenges during maintenance when 
linking the application source code to the text documentation. 
In addition, the separation of concerns coupled with the 
abstract nature of Object Oriented Programming, obscures the 
implementation and creates additional complexity for 
developers during comprehension tasks [6].  

Generally, program comprehension during software 
maintenance can cause additional effort for those developers 
who have little domain knowledge. Therefore, we are 
interested to see whether domain knowledge such as the 
vocabulary of domain-specific concepts could help with 
program comprehension tasks. To this end, we choose two 
software applications of the same domain to compare how the 
domain concepts correlate across various project artefacts. Our 
aim is to identify the opportunities of using the vocabulary in 
artefacts to reduce the program comprehension overhead. For 
instance, the clues obtained from the vocabulary of the 
application domain can be used to trace a change request to 
the source code. Compared to existing work on traceability 



between code and technical documentations, our unique 
contribution is in using the concepts derived from the trade 
standard and the user guide. More precisely, we attempt to 
answer the following research questions: 
 
RQ1: What is the adherence of two conceptually related 
applications to the domain concepts specified by Basel-II? 
 
RQ2: How does the degree of frequency among the common 
concepts correlate across the project artefacts? 
 
RQ3: What is the vocabulary similarity beyond the domain 
concepts, which may contribute towards code comprehension? 
 
RQ4: How can the vocabulary be leveraged when searching 
for concepts to find the relevant classes for implementing 
change requests? 
 
RQ5: What is the impact on the search results of class names 
or change requests not reflecting the domain concepts? 
 

In answering these research questions, we compared the 
project artefacts of two conceptually related applications 
addressing the same Basel-II Accord1 in the finance domain. 
One of these applications is propriety, whose artefacts 
vocabulary has been studied in our preliminary work [7]. The 
other application is open-source, which is fortunate, as 
datasets of finance domain are seldom made available to the 
public. This enabled us to perform the designed study. Our 
analysis helps utilise domain vocabulary across the project 
artefacts of the two conceptually related applications in 
program comprehension tasks.  

The rest of this paper is organized as follows: Section II 
describes related work in the literature, Section III describes 
our data collection procedure and analysis steps, Section IV 
presents our results in answering the five research questions, 
discusses their implications to program comprehension and the 
threats to validity. Finally Section V concludes with additional 
remarks. 

II. RELATED WORK 
 How vocabulary is distributed amongst the program 

elements of an application as well as recovering traceability 
links between source code and textual documentation has been 
recognised as an underestimated area [8]. It is claimed that due 
to source code reflecting only a fraction of the concepts being 
implemented explicitly, one cannot solely rely on the source 
code as the single source of information [9]. On assessing the 
relevance of program identifiers in legacy systems, Anquetil et 
al. [10] argued that so-called "standard" naming conventions 
for program identifiers are misleading because conventions 
imply that an agreement between software developers exists. 
However, Feilkas et al. [11] exposed that the developers 
follow one another to keep a unified standard in development 
projects. We investigate further in an environment where 
recognisable names are used, if the change request and the 

domain concept terms result in higher quality of traceability 
between the source code and the text documentation. 

Abebe et al. [12] present a study on the evolution of the 
source code vocabulary – words extracted from the comments 
and code identifiers – for two evolving software applications. 
The study analysed the history of both applications and 
measured many attributes. Among the most relevant ones to 
our study are (1) the type of relations between the individual 
vocabularies and (2) what the most frequent terms refer to. It 
is concluded that in case of (1) the vocabulary extracted from 
the source code file names resulted in having the highest 
commonality with those found in the comments, and in case of 
(2) simple frequency analysis of the terms indicated that the 
frequent terms are related to domain concepts. We also 
analyse the commonality and the frequency of the vocabulary, 
but we go further in our investigation: we compare the 
vocabulary of different artefacts beyond code, and check 
whether the concepts can be used to map change requests to 
the source code files to be changed.  

In that, our work is similar to the efforts of Antoniol et al. 
[13]. Their aim was to see if the source code classes could be 
traced back to the functional requirements. The terms from the 
source code were extracted by splitting the identifier names, 
and the terms from the documentation were extracted by 
normalising the text using transformation rules. They created a 
matrix listing the classes to be retrieved by querying the terms 
extracted from the text document. The method relied on 
probabilistic and vector space information retrieval and ranked 
the documents against a query. Applying precision and recall 
validated their results. Although the authors compare two 
different retrieval methods (vector space and probabilistic), 
they conclude that semi-automatically recovering traceability 
links between code and documentation is achievable despite 
the fact that the developer has to analyse a number of sources 
during a maintenance task to get high values of recall. Our 
work differs in two main ways. First, it is geared towards 
maintenance, because we attempt to recover traceability 
between change requests and source code classes. Second, we 
improve the precision of the search by using project specific 
vocabulary and stop-word filtering, instead of grammar stop-
words (frequently occurring function words without domain 
meaning, e.g. ‘a’, ‘be’, ‘do’, ‘for’). 

Recently, Abebe et al. [14] presented an approach that 
extracted domain concepts and relations from program 
identifiers using natural language parsing techniques. To 
evaluate effectiveness for concept location, they conducted a 
case study with two consecutive concept location tasks. In the 
first task, only the key terms identified from the existing bug 
reports were used to formulate the search query. In the second, 
the most relevant concept and its immediate neighbour from a 
concept relationship diagram were used. The results indicate 
improved precision when the search queries include the 
concepts. In our study, we also perform concept location tasks 
using the identified concepts referred by the bug reports, 
referred to the change requests (CRs). However we have found 
situations where the relevant concept terms are not adequate 
enough to retrieve the classes affected by a CR thus we 

1. http://www.bis.org 



demonstrate the use of CR vocabulary together with the 
relevant concept terms, additively rather than independently 
from each other to achieve improved search results. 

III. DATA PREPARATION  
We analysed the source code of two industrial financial 

applications, one open source (OSS), referred to as Pillar-One, 
and one proprietary, due to confidentiality referred to as Pillar-
Two. Both applications implement the financial regulations for 
credit and risk management defined by the Basel-II Accord. 
Basel-II (otherwise know as Solvency-II) is the second 
agreement of the Basel Committee on Banking Supervision 
concerning the international banking laws and regulations. The 
recommendations of Basel-II are grouped under 3 categories 
[15]. The first one deals with the management of main 
financial risk areas such as credit, operational and market risk. 
The second category focuses on additional risk types like legal 
and liquidity risk. Finally, the third category provides a 
framework for dealing with minimum capital requirements in 
credit business to manage and reduce the financial risk by 
controlling any risk exposures.  

Pillar-One2 is a client/server application with two main 
modules developed in Java and Groovy by Munich Re (a re-
insurance company). Since Pillar-One’s launch in 2008, two 
additional insurance companies and an open community of 
developers are involved in the maintenance and further 
enhancements. The application consists of 5,593 project 
artefacts comprising source code, configuration, JSP and 
HTML files and text documentation, which are available from 
a GIT3 online repository. The issues, like change requests and 
problem descriptions, are maintained with JIRA4, a public 
tracking tool. 

Pillar-Two is a web-based application developed using the 
Java programming language at our industrial partner’s site and 
is not publicly available. It consists of four modules that are 
clones of each other: they implement the same business 
concepts, but differ in how the calculations are performed and 
parameterized. It has been in production for 4 years and 
consists of about 2,043 artefacts including source code, 
configuration files, and user guide documentation. The 
maintenance and further improvements are undertaken by five 
developers, including in the past the first author, none of them 
part of the initial team.  

Change requests and preventative maintenance tasks i.e. 
functionality enhancements and problem corrections for both 
applications are documented in their respective issue tracking 
and source control systems. The designated developer is 
responsible for obtaining the assigned task and searching for 
the relevant artefacts. So, prior to starting with maintenance, a 
developer who is new to the technical architecture and 
vocabulary of these two applications is faced with the 
challenge of searching the application artefacts to identify the 
relevant sections. For our source code analysis process, we 

obtained the complete code, the user guide, and some CRs (27 
for Pillar-One and 12 for Pillar-Two). The CRs for both 
applications are those implemented for the latest production 
release and are very terse, as shown in Table I. 

TABLE I.  SUB-SET OF CHANGE REQUEST DESCRIPTIONS 

CR  Description for Pillar-One 
1619 unrecoverable error for error parameter poisson.  
1733 Wiring concept for two-phase components should be extended 
2024 Handling IllegalAcceessException in Packets and Collectors.   
2081 Check usage of enum classes 
2093 Quota event limit not implemented.  
2163 GIRAModel not compatible with current master branch  
2200 NPE when changing result views 
CR  Description for Pillar-Two 

2002 Roundup export data to an importable excel format. 
2003 Pdlgd export data to an importable excel format. 
2010 Allow volatility values greather than 1. 
2063 New reallocation method "Use Asset Diversified Risk". 
2068 Show in both sub systems Market and PD/LGD all calculation states  
2074 Dialog to distribute lambda factors similar to other module.  
2081 Show approx. group values and diversification effects. 

 
Subsequently, we utilised the list of financial domain 

concepts identified in our previous study [7]. The domain 
concepts are made up of multiple words (n-grams), e.g. 
“Investment Market Risk”, “Market Value Calculation” and 
“Lambda Factors”. We took the unique single words (like 
‘market’ and ‘lambda’) occurring in the domain concepts as 
basis for our source code analysis, which resulted in 45 unique 
concept words. In addition, we have validated the final list of 
concepts by searching for their occurrences in the official 
Basel-II documentation.  

We processed the obtained project artefacts as described 
above, using our source code analysis framework tool called 
ConCodeSe (Contextual Code Search Engine). ConCodeSe is 
written in Java by extending our previous work and 
implementing the state of the art data extraction, persistence 
and search APIs (Lucene5, Hibernate6, JIM [16]) to process 
Java and Groovy source code files. Figure 1 illustrates the 
extraction, storage, search and analysis stages. In the top layer, 
the contextual model creation and search services execute the 
tasks automatically. The left hand side (1) represents the 
extraction of component words from the source code using the 
JIM tool and from the textual documentation using the Lucene 
API. The middle part (2) shows the storing of the extracted 
vocabulary in the Derby7 database using the Hibernate 
persistence API. Finally in the analysis stage (3), the source 
code analysis over the generated contextual database takes 
place and the search results are saved in a spreadsheet file for 
additional source code analysis tasks like the Spearman 
correlation coefficients tests [17]. 

 
ConCodeSe Process Phases 

Upon defining the location of the project artefacts and the 
output in its configuration file, the process (i.e. data extraction, 
storage and analysis) runs automatically. The ConCodeSe 
process has two phases. The first phase creates a contextual 

2. http://www.pillarone.org 
3. https://github.com/pillarone  
4. https://issuetracking.intuitive-collaboration.com 
5. http://lucene.apache.org/java/docs/index.html 
6. http://www.hibernate.org 
7. http://db.apache.org/derby 



model (corpus) by processing the project artefacts (i.e. 
concepts, change requests, user guides and source code files) 
and extracting the component words. In the second phase, the 
analysis tasks such as searching for the frequency of concepts 
occurring in the project artefacts and searching for the source 
files implementing the concepts are performed over the 
contextual model. The results of the analysis tasks are written 
to an Excel sheet per task performed.  
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Fig. 1.  ConCodeSe Data Extraction, Storage and Search. 

Phase I – Contextual Model Creation 
In this phase, the project artefact’s vocabulary is extracted 

and saved in two stages: (1) source code vocabulary and (2) 
textual documentation vocabulary processing.  
 
1. Source code vocabulary processing stage.  

In this stage, the first task processes Java and Groovy 
source code files. The Java source files are parsed using the 
source code mining tool JIM, which automates the extraction 
and analysis of identifiers from Java source files. It parses the 
source, extracts the identifiers and splits them into single terms 
referred as component words. During this step, the identifiers 
and metadata from the source code abstract syntax tree (AST) 
are extracted and added to a central store, with information 
about their location. Also, the tool INTT [18] within JIM is 
used to tokenise and split the identifier names into single 
words. INTT uses camel case, separators and other heuristics to 
split ambiguous boundaries, digits and lower cases. The 
extracted information i.e. the identifier names, their 
tokenisation and source code location, is stored in a Derby 
database.  

In addition, this stage extracts the identifier vocabulary 
from the Groovy source code files using steps similar to JIM 
and INTT as described above. The extracted Groovy identifier 
names and their component words are also stored into the 
existing database tables whilst retaining referential integrity to 
existing data. For example, if a component word extracted from 

a Groovy source file already exists due to its occurrence in a 
Java source code file then only an additional reference link to 
its Groovy source code file is created. Otherwise the new word 
is added to the database with a reference to its location in the 
source code. The Table II shows the source code artefact size 
of both applications.  

TABLE II.  SOURCE CODE ARTEFACT SIZE 

 Pillar-One Pillar-Two 
Source Code size (LOC) 254,913 80,571 
 - Class files 2,631 337 
 - Identifiers 12,257 4,246 
 - Component words 40,156 13,922 
 - Unique component words 2,215 683 

 
2. Textual documentation vocabulary processing stage. 

This stage extracts the words from the text files i.e. domain 
concept lists, user guides and change requests. The extracted 
words are stored in the contextual model. Once again, this 
process also considers the referential integrity of the existing 
data, for example if a word extracted from one of the text files 
already exists in the database due to its occurrence in a Java or 
a Groovy source code file then a reference link to the word’s 
text file is created. Otherwise the new word is added to the 
database with a reference to its text file. For this stage, we 
developed a Java module in ConCodeSe using the Lucene 
framework to analyse and tokenise the sentences into single 
words. The module implements the Lucene’s Standard-
Analyzer class because it tokenises alphanumerics, acronyms, 
company names, and email addresses, etc. using a JFlex-based 
lexical grammar. It also includes stop-word removal. We used 
a publicly available stop-words list8 to filter them out.  

We saved the user guides as a text file to ignore images, 
graphics, and tables. Confidential information, such as names, 
email addresses and phone-numbers was then manually 
removed from the text. Running our Java module over the user 
guide, we obtained unique words and word instances as shown 
in Table III. We did the same to extract the words from the 
change requests, which resulted in a higher number of terms 
because the CRs are forms containing fields for tracking 
purposes e.g. ‘Priority’, ‘Assigned Date’ and ‘Defect Id’ are 
repeated in all change requests. In case of the identified 
domain concepts, the extraction and storage process resulted 
in 45 unique concept words with 112 occurrences within the 
concept descriptions document. Also processing the official 
Basel-II documentation resulted in 4,726 unique words with a 
total of 75,292 instances. 

In addition, since the CRs were already implemented for 
the versions of the applications being analysed, we have 
identified the affected source codes files by manually analyzing 
the source code repository commits. We have listed the 
affected source code file names (208 for Pillar-One and 61 for 
Pillar-Two) as referential link in the contextual model between 
the CRs and the source code file names. Once all the textual 
artefacts are processed and component words are stored and 
cross-referenced, we performed word stemming. For this task, 
we used Lucene’s PorterStemmer class to compute the word’s 
stem by removing the common and morphological endings 8. http://armandbrahaj.blog.al/2009/04/14/list-of-english-stop-words 



(a.k.a. inflections). This takes lexical variations into account, 
e.g. words calculation, calculated, calculating etc. have the 
stem ‘calcul’. We also linked the component words to their 
stem words in the model. At the end of this phase the 
contextual model is created with the component words acting 
as referential link among the artefacts to provide strong 
relational clues during source code analysis activities as 
described next.  

TABLE III.  NUMBER OF WORDS IN TEXTUAL ARTEFACTS 

 Pillar-One  Pillar-Two  
Words  Total Unique  Total  Unique  

Change Requests  1030 409 1,582 167 
User Guide - UG 21,381 3,688 13,801 697 

 
Phase II –Source code analysis. 

In the second phase of our process, we developed a search 
module in ConCodeSe using Java to run SQL queries to (1) 
search for occurrences of the concepts in all four kinds of 
artefacts (CRs, user guide, code and Basel-II documentation) 
and (2) search for all classes that included the component 
words matching the concepts found in CRs. For each search, 
we performed exact match and then stem match to see if we 
obtained more accurate results. In addition, for search (2), the 
manually identified classes affected by each CR are used to 
compute precision and recall of the search results. ConCodeSe 
generates an Excel file with individual work sheets containing 
information on (1) the contextual model data size (i.e. number 
of packages, source files, identifiers, number of words etc.), 
(2) the occurrences of concept words in the project artefacts, 
(3) the precision and recall of finding the changed classes 
given the change requests and their concepts, and (4) the word 
occurrences for each of the project artifact. In ConCodeSe, the 
results of the search module are measured by recall: measures 
the completeness of the results and precision: measures the 
accuracy of the results.  

The complete processing (i.e. parsing, extracting, splitting, 
storing, searching and creating the result file) of all four 
project artefacts (i.e. source code files, change requests and 
user guides) for both applications took 69 seconds on a dual 
core iMac with 4GB memory. The resulting database size in 
case of Pillar-One is 39MB, containing 4,826 unique 
component words and 3,365 word stems. In case of Pillar-
Two, the resulting database size is 14.9Mb, containing 1,195 
unique component words and 834 word stems. Although 
ConCodeSe can process and store multiple artefacts of 
multiple projects in one contextual model, for our source code 
analysis purposes we have chosen to keep the models separate 
for each project.  

IV. ASSESSMENT OF RESEARCH QUESTIONS 
We searched for the concept occurrences and the 

vocabulary coverage of the terms across the project artefacts. 
Using statistical Spearman tests, we demonstrate how the 
concepts correlate in the two applications, which are 
independent of one another but yet aim to implement the same 
regulatory Basel-II Accord. In addition, we show the results of 
searching for class names matching the concepts referred in 

the CRs and how a developer leverages vocabulary while 
executing a maintenance task.  

 
RQ1: What is the adherence of two conceptually related 
applications to the domain concepts specified by Basel-II?  

Searching for exact occurrences of concepts in all four 
project artefacts i.e. CRs, user guide (UG), source code (SRC) 
and Basel-II documentation (BD – shared by both 
applications), revealed that while each concept occurred in at 
least one artefact, only 7 concepts occurred across all artefacts 
in case of Pillar-One (see Table IV) and only 14 in case of 
Pillar-Two. Due to space limitations Table IV shows the top 
seven common concepts, sorted by their frequencies in the 
CRs, and their respective frequencies in the other artefacts.  

TABLE IV.  COMMON CONCEPTS IN ARTEFACTS 

Concept  
.Pillar-One  

CR UG SRC BD 
Freq Rank Freq Rank Freq Rank Freq Rank 

time 10 1 35 2 142 3 190 3 
current 6 2 15 5 96 4 129 4 

capital 3 3 20 3 46 5 1097 2 

aggregated 2 4 7 6 42 6 11 7 

correlation 1 5 4 7 3 7 38 6 

index 1 6 20 4 470 2 42 5 

risk 1 7 143 1 1849 1 2196 1 
.Pillar-Two 

market 32 1 605 1 561 2 513 2 

value 24 2 198 7 481 3 271 3 

calculation 14 3 513 2 56 12 102 8 

risk 12 4 259 4 411 4 2196 1 

asset 8 5 49 11 173 7 190 4 

diversified 7 6 37 13 14 13 15 14 

base 3 7 104 8 170 8 29 13 
 
Next, we searched again for concepts in the terms and 

words extracted from the artefacts, but using stemming. This 
resulted in 4 additional concepts: label, line, receiver and 
value, to be retrieved from the Pillar-One project artefacts. In 
case of Pillar-Two, the stemming did not increase the number 
of common concepts between the artefacts but it changed the 
number of instances found. For example, there are 56 exact 
occurrences of the concept ‘calculation’ in the source code, 
but searching for the stem ‘calcul’ returned 29 additional 
instances for the terms calculate, calculated, calculating, 
calculations and calculator. Also the stemming consolidated 
concepts rule and rules into rule, which resulted in 44 
concepts to be considered during the search.  

Furthermore, we noticed that 7 out of 45 concepts resulted 
in null occurrence in the BD. Upon investigating the reasons, 
we found that this is due to the naming conventions used in the 
documentation, for example the concept ‘pdlgd’ is referenced 
as ‘pd/lgd’ and ‘subgroup’ as ‘sub-group’ in the BD. Overall, 
the distribution of the 45 concepts among the artefacts is as 
given in Figure 2.  
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Fig. 2.  Concept Distribution among artefacts. 

Subsequently, we measured the vocabulary coverage of 
Basel-II Accord in both applications and searched the 
occurrence of the Basel-II documentation (BD) words in the 
three project artefacts i.e. CRs, user guide (UG) and source 
code (SRC) of both applications. We extracted 4,726 unique 
words from the BD and 2,771 stems. Once again each word 
occurred at least in one artefact but only 132 words occurred 
in all three artefacts in case of Pillar-One and only 49 words 
occurred in case of Pillar-Two. After stemming, the BD word 
occurrence in Pillar-One is increased by 16% to 153 words 
and in Pillar-Two it increased by 35% to 66 words. Since the 
common vocabulary coverage in all three artefacts is low, 11% 
and 8% respectively, we wanted to see whether the UG and 
SRC revealed the terminology used in the guideline drawn out 
by the Accord. We searched the occurrence of the BD 
stemmed words in the user guide and source code of both 
applications. We found identical number of word occurrences 
in the user guides and source code of both applications. As 
Table V show, the user guides share 308 common BD words 
and the source codes share 221 common BD words.  

TABLE V.  COMMON BD VOCABULARY IN ARTEFACTS  

 Exact  Stemmed UG SRC 
Pillar-One 132 153 308 221 
Pillar-Two 49 66 303 221 

 
We expected that the domain concepts identified in our 
previous study [7] to occur in the official Basel-II 
documentation (BD). Our search found 38/45 or 87% of the 
concepts in BD, which supported the validity of the manually 
identified concepts. Second we anticipated these concepts to 
exist in the OSS application Pillar-One since it addresses the 
same domain as well. We searched the occurrences of the 
concepts and indeed found that the project artefacts of Pillar-
One explicitly include the concepts (see Fig. 2), which 
confirmed that both applications implement the concepts of 
the highly regulated Basel-II accord. Also, we discovered 4 
common concepts: risk, index, value and time that occurred in 
all project artefacts of both applications. This indicates that the 
two independent applications with core functionality for 
calculating financial risk based on index values over 
predefined time periods reflect the key domain concepts 
described in the official documentation. 

RQ2: How does the degree of frequency among the common 
concepts correlate across the project artefacts? 

We wanted to identify if the concepts also have the same 
degree of importance across artefacts, based on their 
occurrences. For example, among those concepts occurring 
both in the code and in the guide, if a concept is the n-th most 
frequent one in the code, is it also the n-th most frequent one 
in the guide? We applied Spearman’s rank correlation 
coefficient (CC), to determine how well the relationship 
between two variables in terms of the ranking within each 
artefactual domain can be described [17]. The correlation was 
computed pair-wise between artefacts (see the Table VI 
headings), over the instances of the concepts common to both 
artefacts. Table VI shows the results obtained using the online 
Wessa statistical tool9. 

In case of Pillar-One, for both search types (exact and 
stem), the correlation between CRs and the other three 
artefacts (UG, SRC and BD) is low and not statistically 
significant (p-value > 0.05). This is because there are very few 
common concepts with exact occurrences in CRs. However, 
the correlation among UG, SRC and BD without CRs is 
stronger and statistically significant (p-value < 0.05). For stem 
search, the correlation decreases in most cases. 

TABLE VI.  SPEARMAN CORRELATION OF CONCEPTS AMONG ARTEFACTS 

Correlation 
Between => 

CR vs 
UG 

CR vs 
SRC 

CR vs 
BD 

UG vs 
SRC 

UG vs 
BD 

SRC 
vs BD 

P1- Normal       

Correlation  0.169 -0.036 0.214 0.884 0.848 0.643 

Probability 0.674 0.928 0.596 0.030 0.037 0.114 

P1- Stem   
     Correlation  -0.175 -0.018 0.073 0.782 0.536 0.207 

Probability 0.575 0.952 0.818 0.013 0.089 0.509 

P2- Normal       

Correlation  0.414 0.183 0.558 0.525 0.418 0.421 

Probability 0.133 0.503 0.043 0.057 0.131 0.128 

P2- Stem   
     Correlation  0.635 0.178 0.664 0.553 0.574 0.298 

Probability 0.021 0.516 0.016 0.046 0.038 0.280 
 
In case of Pillar-Two for exact search, the correlation is 

low and not statistically significant except between CR and 
BD as well as UG and SRC. For stem search, the correlation 
between CR and UG as well as UG and BD becomes stronger 
and statistically significant. On the contrary to Pillar-One 
where stemming increased the number of matched words, the 
stemming of words into their root increases their instances in 
the artefacts. This changed the relative ranking of the common 
concepts. The Spearman correlation became stronger and 
statistically more relevant, as Table VI shows. Only the 
correlation between CRs and SRC as well as SRC and BD 
remains insignificant. 

We found that only 25/45 or 56% of concepts occur both in 
the code and documentation in case of Pillar-One and 36/45 or 
80% in case of Pillar-Two. Since the source code is consulted 9. http://www.wessa.net/rankcorr.wasp 



during maintenance, this lack of full agreement between both 
artefacts may point to potential inefficiencies during 
maintenance. However, using stemming to account for lexical 
variations, the common concepts correlate well (with a high 
statistical significance of p=2*10-4) in terms of relative 
frequency, taken as proxy for importance, i.e. the more 
important concepts in the user guide tend to be the more 
important ones in the code. This good conceptual alignment 
between documentation and implementation eases 
maintenance, especially for new developers. The weak 
conceptual overlap and correlation between CRs and the other 
two artefacts is not a major issue for us since CRs are usually 
specific for a particular unit of work and may not necessarily 
reflect all implemented or documented concepts.  

 
RQ3: What is the vocabulary similarity beyond the domain 
concepts, which may contribute towards code comprehension? 

We searched the contextual model of Pillar-One using the 
source code words of Pillar-Two, excluding the concept 
words. We identified 428 common words in both applications 
with varying frequency. We also cross-checked the validity of 
the identified common words by repeating the search over the 
contextual model of Pillar-Two using the source code words 
of Pillar-One and obtained the same number of common 
words. The common words search results indicated that 63% 
of Pillar-Two’s vocabulary exists in Pillar-One and conversely 
only 18% of Pillar-One’s vocabulary exists in Pillar-Two. 

Subsequently, we wanted to find out if the common 
vocabulary also contributes towards ease of code 
understanding by developers. Since identifiers are made up of 
compound words, we looked at overall vocabulary of all the 
identifiers and not just component words that occur in the 
source. After all, even if there is overlap in the component 
words, one application might combine them in completely 
different ways to make identifiers that other developers will 
find confusing. Indeed, both applications combine the words 
differently as we found only 37 common identifiers between 
the applications. As shown in Table VII, the concept ‘Market 
Value’ is used in Pillar-One on the left-most position of an 
identifier name, whereas the same concept is used in Pillar-
Two on the right-most position. Based on our experience of 
project naming conventions, it is found that method 
parameters are prefixed with “p” as in “pBase” compared to 
”parmBase” in Pillar-One. 

TABLE VII.  SAMPLE OF IDENTIFIER SIMILARITY 

Pillar-One marketValueOfBods getLabelText parmBase 
Pillar-Two longTermMarketValue getLabelName pBase 
 
Since both applications are about the same domain, we 

wanted to find out if the developers have some common 
vocabulary that is outside the domain concepts. We analysed 
the vocabulary coverage of the BD among the project artefacts 
of both applications and found that the common vocabulary 
coverage reveals the developers’ compliance with the official 
documentation (see Table V). Although both applications 
combine the words differently on the identifier names (only 37 

common ones), comparing the rest of the identifiers based on 
our industrial experience with Pillar-Two, revealed similarities 
indicating that the developer of one application may easily 
navigate the code base of the other one (see Table VI). This 
indicates two good pointers for maintenance (a) full business 
vocabulary coverage, and (b) in both projects abbreviations 
are not required to retrieve such vocabulary from the artefacts.  
 
RQ4: How can the vocabulary be leveraged when searching 
for concepts to find the relevant classes? 

Next, we searched each application for class names 
matching the concept words referred by the CRs. We started 
our experiments with Pillar-Two first because we were able to 
identify the concepts addressed by each CR based on our 
industrial experience hence allowing us to accurately validate 
and calibrate the search techniques within our tool.  

 
RQ4.1. Pillar-Two:  
For each search, we performed exact match and then stem 

match to see if we obtained more accurate results. We 
computed the precision and recall of the results by comparing 
the retrieved classes to those that should have been returned, 
i.e. those that were affected by implementing the CR. Exact 
CR concept search had very high recall with very low 
precision. Since a stemmed search returns a superset of exact 
search, we expected it to deteriorate precision and to improve 
recall. Table VIII shows the subset results of the stemmed 
search; indeed, the precision did deteriorate, e.g. for CR #2074 
it declined from 19.05% to 16.67%. The reason for this is that 
the stem of ‘factors’ is ‘factor’ and of ‘value’ is ‘valu’, 
resulting in 8 additional classes to be retrieved. The stemmed 
search did not improve recall either, e.g. no additional relevant 
classes were found for CRs #2002 and #2003 thus precision 
and recall remained 0%.  

TABLE VIII.  PILLAR-TWO STEM CONCEPT SEARCH RESULTS (SUBSET) 

CR 
#  

stemmed concepts 
searched  

relevant 
classes 

relevant 
retrieved 

recall 
(%) 

retrieved 
classes 

precision 
(%) 

2002 roundup, valu 15 0 0 11 0.00 
2003 valu 6 0 0 11 0.00 
2010 volatil, market, valu 6 6 100.00 142 4.23 
2063 index, asset, market 7 6 85.71 161 3.73 
2074 factor, lambda, valu 6 4 66.67 29 16.67 
2081 group,roundup,helpr 6 0 0 11 0 

 
We looked further at the reasons for low precision. In the 

case of CR #2002 (0% recall and precision), the request is 
about a generic action (exporting) (see Table I) on the concept 
(roundup), and as such the concept does not appear in the 
relevant class names. Other CRs involve the frequent concept 
‘market’ (see Table IV), which due to the project naming 
conventions occurs in almost every class name of the module, 
causing many false positives.  

We asked an additional research question: How can we 
tailor the search to improve precision, so that developers have 
to inspect fewer classes for relevance?  



We prepared a customized search for a subset of the CRs 
from Table I. First, we searched the classes using the actual 
words of the CR, rather than its associated concepts, because 
they better describe the concept’s aspects or actions to be 
changed. However, the CR and the class identifiers may use 
different words. For example, the CR #2081 term ‘mask’ 
refers to the GUI, which is implemented by the Helper pattern, 
explicitly referred to in class names. Hence we introduced a 
project specific mapping mechanism, which in our case 
includes ‘mask’ → ‘helper’. Finally, we discarded from 
searches project specific stop-words by automatically selecting 
the two most frequently occurring concepts, ‘market’ and 
‘value’ for Pillar-Two and ‘time’ and ‘current’ for Pillar-One 
(Table IV). The new results obtained are shown in Table IX. 
We see that precision increased by 100% for CRs #2010 and 
#2063 compared to Table VIII, while the impact on recall 
remained minimal and the previously not detected classes for 
CR #2002, #2003 and #2081 are also retrieved.   

TABLE IX.  PILLAR-TWO SEARCH RESULTS WITH STOP WORDS (SUBSET) 

CR 
#  

CR vocabulary 
searched  

relevant 
classes 

relevant 
retrieved 

recall 
(%) 

retrieved 
classes 

precision 
(%) 

2002 roundup,data,export 15 15 100.00 74 20.27 
2003 pdlgd,data,export,… 6 6 100.00 79 7.59 
2010 volatility,… 6 5 83.33 81 6.17 
2063 asset,diversified,… 7 5 71.43 81 6.17 
2074 factor, lambda, … 6 4 66.67 95 4.21 
2081 group,roundup,helpr 6 1 16.67 35 2.86 

 
RQ4.2. Pillar-One:  
In case of Pillar-One, we repeated the same search tasks as 

for Pillar-Two (exact match followed by stem match) and 
obtained 0.00% recall and precision. This indicated that either 
the action-oriented nature of CRs did not indicate clues to the 
concepts being addressed directly or the class names of Pillar-
One did not reflect concept words explicitly. So we searched 
again using the CR vocabulary and also, we assigned a weight 
to each resulting class based on the query words matching the 
terms found in a class name. For example, given a query with 
words “abc” and “xyz”, if the found classes are AbcXyzClass 
and XyzClass, then the class weights are 2 and 1 respectively 
because class AbcXyzClass has both of the queried words in its 
name. The weight is used to rank the classes in the result list, 
which allowed us to focus only on the top 30 classes since the 
developers are unlikely to go through any longer lists. We 
found relevant classes matching 5 CRs as Table X shows. 

TABLE X.  PILLAR-ONE SEARCH RESULTS WITH CR WORDS (SUBSET) 

CR 
#  

CR vocabulary & 
concept searched  

relevant 
classes 

relevant 
retrieved 

recall 
(%) 

retrieved 
classes 

precision 
(%) 

1619 lambda 24 0 0 0 0 
2093 quota,feature,event 6 2 33.33 4 50.00 
2163 master,comp,plugin 60 6 10.00 15 40.00 
2169 section,config,pane 14 6 42.86 13 46.15 
2200 crash,open,aggregat 13 6 46.15 24 25.00 
2081 quota,speific,feature 6 2 33.00 4 50.00 

The improvement in recall inspired us to experiment 
further by repeating the search but this time considering all of 
the words extracted from the identifiers contained in each 
class in addition to the words extracted from the class name. 
For this task we created an indexed contextual model of class 
names and all their associated words using Lucene’s Vector 
Space Model (VSM). In VSM, each document and each query 
is mapped onto a vector in a multi-dimensional space, which is 
used for indexing and relevance ranking [19]. In our case, each 
class with its list of words is treated as a document in the 
VSM. We searched the indexed “class by words” document 
model using Lucene’s query API to take full advantage of the 
VSM. As shown in Table XI, exact search discovered the 
classes for CR #1619. The stem search did not expose any 
additional classes, except for a slight drop in precision values 
due to the stem returning a superset of exact search as 
described earlier. The search with CR vocabulary in addition 
to concept words resulted in discovering classes for 2 
additional CRs #1733, #2024. Overall, we recovered 
traceability links between the CRs and the affected classes for 
8 CRs by combining the vocabulary of the project artefacts.  

TABLE XI.  PILLAR-ONE SEARCH RESULTS USING VSM (SUBSET) 

CR 
#  

Concept searched 
Vocabulary srchd  

relevant 
classes 

relevant 
retrieved 

recall 
(%) 

retrieved 
classes 

precision 
(%) 

1619 lambda 24 2 8.33 13 15.38 
1733 multi,phase,comp… 8 1 12.50 276 0.36 
2024 save,collect,value,... 4 3 75.00 163 1.84 

 
We searched for the classes using the concepts referred by 

the CRs and obtained differentiating results. We found that in 
case of Pillar-Two, mapping a CR’s wording to domain 
concepts and using those to search for classes to be changed, is 
enough to achieve very good recall, but precision is poor and 
in case of Pillar-One both recall and precision remains low. 
Upon investigating the reasons for this, we discovered that in 
Pillar-Two the class names reflect the concepts and the CR 
descriptions have very good concept word coverage while this 
is not the case in Pillar-One. Also we found that overloading 
the class names with concept like project specific words cause 
high recall and low precision on one hand and on the other 
hand having no indication to the concepts referred by a CR 
produce no results. Since CRs may come from a group of 
people who are unfamiliar with the vocabulary used in the 
code and in the documentation, we recommend CR documents 
to contain a section for describing the relevant concepts that 
the current CR is referring to. 

 
RQ5: What is the impact on the search results of class names 
or CRs not reflecting the domain concepts? 

Since we were able to recover at least one traceability link 
for all of Pillar-Two CRs but not for Pillar-One, we have 
investigated the reasons for this and found out that Pillar-Two 
class names and CR descriptions reflect the concepts more 
explicitly than Pillar-One as illustrated in the following 
example. Table XII shows two CRs concerning the concept 
“lambda”. In case of Pillar-Two CR #2074, the four classes 



are found because these class names include the searched 
concept.  

However, in case of Pillar-One CR #1619, the affected 
classes are not detected during the exact concept search 
because the class names do not include the concept word being 
searched. After extending the search, in case of Pillar-One, to 
also consider the identifier names existing within the body of a 
class, the exact search found the affected classes based on the 
identifier names.  

TABLE XII.  CLASS NAMES AND IDENTIFIERS EXAMPLE 

CR Concept Affected Classes Identifier 

2074 
(P2) 

factors, 
lambda, 
value 

K4MarketHelperDistributeLambda 
K4MarketRiskLambda, 
K4MarketProcessorCopyLambda, 
K4MarketHelperCopyLambda  

calculateLambdas, 
readLambda,  
hasLambdaDiversified, 
lambdaFactorSet 

1619 
(P1) 

lambda LognormalTypeIIParetoDistributio 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
Furthermore, in case of Pillar-One, the recall and precision 

values for exact and stemmed search results were 0.00% (see 
RQ4.2). Upon investigating the reasons we found in addition 
to class names not reflecting the concepts, the terse CR 
descriptions also fail to reflect most of the concepts (see Table 
I). This is also illustrated in Fig. 2 where only 8/45 or 18% of 
the concepts occur in Pillar-One CRs, while Pillar-Two’s CRs 
include double that amount. 

At this stage we asked another research question: How 
would a developer leverage the quantitative information to 
comprehend an application?  

We asked a Pillar-Two developer to re-implement Pillar-
One CR# 2031 “Net reserve risk uses gross numbers”. To 
obtain a list of candidate classes as initial starting point, he 
compared the CR terms against the concept occurrences (see 
Table IV) and searched for the class names containing the 
term “risk”, which returned no results as the class names in 
Pillar-One do not contain the concept “risk”. So he considered 
additional CR terms based on their ranking in the source code 
obtained by searching the occurrences of the Basel-II 
documentation (BD) vocabulary across the project artefacts of 
Pillar-One in answering the RQ1 (see Table XIII). 

TABLE XIII.  BD VOCABULARY OCCURRENCES IN PILLAR-ONE (SUBSET) 

BR words 
.Pillar-One  

CR UG SRC 
Freq Rank Freq Rank Freq Rank 

reserve 11 1 110 13 309 19 
gross 2 23 135 3 107 30 

numbers 1 56 49 23 48 41 

 
The next candidate CR term to use was reserve, which 

resulted in 57 classes. Next, he decided to narrow down the 
search to include those classes that are of relevance for the 
CR. He extended the search to also consider the terms 
contained in the body of the classes. Based on Table XIII, he 
selected the next highest ranked SRC term gross from the CR 
description to be searched in the body of the candidate classes, 
which narrowed the results to only 6 classes. He considered 4 
of them to be irrelevant as their names indicated these classes 

to be configuration related and decided to focus on the 
remaining two as candidate classes. Investigating the body of 
the two classes revealed program logic for calculating “gross 
claims” and instances of the term gross occurring together 
with the number 1 ranking term claim. Subsequently, he 
continued by searching for the classes referring to the two 
candidate ones but we decided not to investigate further since 
our aim was only to demonstrate the use of quantitative 
analysis to aid developers in discovering the relevant classes. 

Both recall and precision can be improved by (a) using the 
actual CR vocabulary, (b) mapping some of it to different 
terms used in class identifiers, (c) ignoring frequent concepts, 
which act as stop-words and (d) considering all the words 
extracted from a class during the search. We note that such 
project specific, simple, and efficient techniques can 
drastically reduce the false positives a developer has to go 
through to find the classes affected by a CR. We also note that 
in projects like this, where class identifiers are more 
descriptive than abbreviations, the use of stem search 
decreases precision, while not increasing recall. In addition we 
observed that developers would benefit if CRs provide a 
section with ranked keywords to be used when searching the 
relevant program elements during maintenance. 

Threats to Validity 
A single developer demonstrated the use of quantitative 

analysis results in discovering the relevant classes. This threat 
to internal validity will be addressed by conducting controlled 
experiments involving additional developers. We only used 
single-word concepts, while business concepts are usually 
compound terms. We searched the project artefacts of Pillar-
One using the concepts defined in our previous study [7]. In 
fact, it is feasible to have other concepts that are not reflected 
in our list. Also, the relative frequency was taken as the proxy 
for importance.  

These threats to construct validity will be addressed in 
future work: we will see if term co-occurrence improves 
precision and will elicit concepts from the official Accord. The 
characteristics of the projects (the domain, the terse CRs, the 
naming conventions, the kind of documentation available) are 
a threat to external validity. We catered for this by repeating 
the experiments with two different applications addressing the 
same financial domain for comparison. In our future work we 
aim to consider additional applications from other domains. 

V. CONCLUDING REMARKS 
In this study we investigated the vocabulary of two 

independent financial applications covering the same domain 
concepts. We found that artefacts explicitly reflect the domain 
concepts and the paired artefacts of these applications have 
good conceptual alignment. This alignment helps facilitate 
program comprehension when searching for classes affected 
by given change requests (CRs). Both applications adhere with 
the vocabulary of the Accord and reveal good overlap in-
between, indicating a full coverage of the business vocabulary. 
Although the descriptive identifiers support high recall of 
classes affected by CRs, the low precision may be detrimental 
to maintenance.  CR descriptions or class names do not always 



reveal the concepts, and class names are found overloaded 
with concept terms due to naming conventions, which may 
account for the high recall/low precision phenomena.  

The importance of descriptive and consistent identifiers for 
program comprehension has been extensively argued for in the 
academic [8] and professional literature [20]. Our study 
showed that despite good naming conventions and vocabulary 
coverage, it is challenging to find the classes referred by a CR. 
Although reflecting the daily tasks of the developers, CRs of 
action oriented nature are not a better source for traceability 
than user guides and trade standards. It is found that these two 
types of documentations describe the usage scenarios and may 
account for the improved traceability. 

This work is an exploration of the vocabulary relations 
between artefacts and the concepts. It illustrates that even in 
highly regulated environments naming conventions cause 
overloading and overcloud program comprehension, hence 
providing further evidence that one cannot rely on the code as 
the single source of information. This in turn highlights the 
need for better programming guidelines and tool support 
beyond enforcing naming conventions within the code because 
naming conventions alone do not guarantee a good traceability 
between the concepts and other project artefacts. In our future 
work, we will consider constructing a contextual model as the 
consistent set of clues to aid program comprehension.  
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