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Abstract—For software engineers to find all the relevant 
program elements implementing a business concept, existing 
techniques based on information retrieval (IR) fall short in 
providing adequate solutions. Such techniques usually only 
consider the conceptual relations based on lexical similarities 
during concept mapping. However, it is also fundamental to 
consider the contextual relationships existing within an 
application’s business domain to aid in concept location.  As an 
example, this paper proposes to use domain specific ontological 
relations during concept mapping and location activities when 
implementing business requirements.   
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I.  RESEARCH PROBLEMS  
In software maintenance, prior to implementing business 

requirements, the designated software engineer has to go 
through the complex task of locating the relevant program 
elements implementing the concept at hand. This search 
activity is called the concept location. To influence the 
concept location success rate in finding the relevant 
program elements, researchers have used information 
retrieval (IR) techniques like Latent Semantic Indexing 
(LSI) [1]. Such techniques revealed that the relational 
aspects of the terms extracted from the program identifiers 
are also needed to obtain more effective results. Further 
research has looked into term associations within the natural 
language representation of the application’s source code to 
map the conceptual relations [2]. In addition, these 
approaches revealed that terms used to represent similar 
meanings in computer science vocabulary, could have 
different meanings in the English vocabulary. For example, 
the term fire extracted from the identifier fireEvent is used 
synonymously with the term notify extracted from identifier 
notifyListener but the <notify, fire> pair do not commonly 
relate with one another in English text [3].  

Existing information retrieval techniques perform 
concept location based on the lexical similarities of 
vocabulary between the search terms and the terms 
extracted from the source code identifiers. Some concepts 
though cannot be directly identified by looking at the single 
identifier names like the concept of standalone risk. 
Multiple words (n-grams) put together describe these types 
of concepts [4]. To catalogue such concepts, it is necessary 
to consider the conceptual relations that exist within the 
application’s business domain. Furthermore, current 
techniques do not consider expanding the abbreviated forms 
of the terms extracted from the source code identifiers [6]. It 

is presumed that the identifiers e.g. method names, are made 
up of single or compound well-formed English words. After 
splitting them into terms, they are used directly to determine 
their similarities to other terms or participate in some sort of 
a part-of-speech tagging mechanism. However, it is 
common to obtain ambiguous term definitions after 
identifier splitting. For example, the term corr extracted 
from the identifier corrAsset in a financial application 
represents the concept correction asset but when it is 
extracted from corrList it represents a list of correlation 
concepts. 

Therefore, formalising the relations between concepts to 
represent the semantic information existing at a contextual 
layer is needed during concept mapping. This would 
improve the effectiveness of the concept location activities 
by providing fundamental clues. For example, in the case of 
“standalone risk”, the word “standalone” would convey a 
conceptual meaning only when used together with the word 
“risk” in a financial application’s domain.  

In the following sections, a novel research approach is 
proposed to address the stated problems by utilising the 
contextual information that exists within an application’s 
business domain captured in domain specific ontologies. 
The captured context will be used in reverse engineering the 
embedded knowledge from an application's source code to 
generate a searchable corpus for use in concept location 
activities. The corpus is the searchable intermediate form of 
the application’s source code. 

II. CURRENT RESEARCH  
The literature on information retrieval identifies the LSI 

technique as one of the most commonly used techniques to 
support search engines [1]. LSI organises the occurrences of 
artefacts (e.g. terms and documents) in a repository of term 
by document matrix called the Vector Space Model (VSM). 
In VSM, the possible term relations are not taken into 
account when calculating their similarities. So, LSI applies 
the Single Value Decomposition (SVD) principle to store 
semantically related terms.  

To represent the natural language (NL) relations existing 
between the terms extracted from an application’s source 
code, Hill et al. [2] constructed a NL representation of the 
source code. This is achieved by applying linguistic phrase 
structures like nouns and semantic usage information 
obtained from mining the comments and word similarities. 
The approach does not consider the structural information, 
like caller-callee or inheritance relationships between the 
source code entities. In the caller-callee relation, the caller 



is the method calling the current method and the calle is the 
method being called from the current method. 

A promising approach to represent the relational context 
of an application’s domain in software engineering is to 
capture the knowledge embedded in the project artefacts in 
domain specific ontologies. Ratiu et al. [5] extracted domain 
ontologies from Java APIs using similarity/path matching, 
like isA, hasPart relations, and validated them against the 
manually defined concepts. Hayashi et al. [6] have 
demonstrated the use of ontologies in concept location 
process to recover the traceability link between a natural 
language sentence and the related source code elements. A 
shortcoming of Hayashi’s method is that the nodes from the 
ontology graph are directly mapped to the method names. 
Therefore during concept location the approach fails to 
detect those classes implementing the related concepts that 
use different words in the method names than those defined 
in the ontology graph.  

The use of ontologies to represent the domain 
knowledge and then to utilise them during information 
retrieval has long been exploited in the biomedical research. 
The Open Biomedical Ontologies (OBO) consortium1 
promotes the integration of biomedical data through the 
annotation of multiple bodies using common controlled 
vocabularies or ‘ontologies’ [7]. Witte et al. [8] applied the 
ontology usage by integrating information retrieval between 
biological databases and text research papers within a 
biological application. In addition, Andreasen et al. [9] 
articulate that ontologies representing specific domains can 
be used to perform enhanced content-based text search. 
They argue that searching textual data is progressing 
towards a semantically oriented form and they present their 
project where querying over the semantically formalised 
biomedical text using ontology is achieved. However, the 
need to validate the approach on large-scale industrial 
applications is acknowledged.  

III. RESEARCH QUESTIONS 
Information retrieval methods expose common 

challenges across different disciplines when searching for 
the relevant pieces of information in a large data set. For 
example, in biomedicine, a neuroscientist attempting to 
extract information pertaining to the brain from the anatomy 
data set structure with many relations would only be 
interested in those relevant to the neuro-anatomical concepts 
[10]. The neuroscientist can be compared to a software 
engineer who is attempting to identify program elements 
implementing a concept in a financial risk application with 
several and relations. Hence, to address the problems stated 
and gaps presented in the current techniques, there is a need 
to investigate answers to the following research questions:  

How can the use of contextual information captured by 
domain specific ontologies (1) improve the concept mapping 
during searchable corpus generation, (2) provide 
meaningful clues to identify n-gram concepts during the 
concept location activities. 

IV. RESEARCH METHOD 
The research method will involve the definition of a 

semantic context, the development of a novel concept 
mapping approach used to generate a searchable corpus and 
a search engine for concept location.  

A. Semantic Context 
The definition of a semantic context addresses the formal 

representation of business concepts implemented in an 
application by using ontologies. First, the previously 
extracted and validated financial business domain concepts 
identified in [4] will be further analysed manually to define 
the associations between each other. Second, this captured 
domain specific semantic information will be formalised by 
using the Ontology Web Language (OWL). It is stored as a 
project artefact to be leveraged during corpus generation 
and search activities. The OWL2 is a structural framework 
for organising and representing information as a set of 
concepts and their relations within a domain.  

During the formalisation of the concepts, only isA and 
hasPart relations will be considered [5]. The “isA” relation 
describes the hierarchical association between a concept and 
its super or subordinate, the “hasPart” describes the 
properties of a concept. Figure 1 shows a partial 
representation of the domain ontology for the “market 
investment risk” module of the financial application [4]. The 
two types of risk concepts, "diversified" and "standalone" 
are associated with the concept "risk" using “isA” relation. 
The “hasPart” relation is illustrated by the two properties of 
the concept “index”, the concepts volatility and correlation. 
In the context of this paper the "isA" relation is going to be 
used to formalise the n-gram, compound concepts, like the 
concept of "standalone risk".  

B. Corpus Generation 
The corpus will be created in three steps. The first step 

will extract terms from the program identifiers, split and 
store them in relational database by using the existing tools 
as demonstrated in [4]. The second step will develop a new 
concept mapping approach by extending the existing ones 
defined in [2] and [6]. In the third step, a static call-graph is 
going to be generated from the source code of the 
application to catalogue the structural information, such as 
caller-callee and inheritance relations amongst the program 
elements.  

The approach presented in [2] extracts nouns, verbs, 
direct objects and prepositional phrases from method 
signatures and identifiers to enable contextual searching. 
The context fails to provide strong clues in detecting all the 
relevant program elements, especially those ones where the 
search terms are not used on the declaration of searched 
elements. For example, Figure 2 illustrates the partial call 
hierarchy graph of displaying the concepts "correlation" and 
"covariance" to the user of the financial application. 
Searching for the term "covariance" using the approach in 1. http://www.obofoundry.org 

2. http://www.w3.org/TR/owl-features/ 



[2] detects the methods numbered 2, 4 and 5 but fails to 
detect the methods numbered 3, 7 and 8. This is because the 
context of the approach fails to provide relational clues. The 
approach will be further investigated to determine its 
extendibility by applying the domain specific ontologies to 
provide stronger context during concept location.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.  Partial ontology of "Market Investment Risk". 

The approach presented in [6] makes use of relational 
information defined in ontology and in call graphs. The 
relevance of the called element is determined based on 
whether the call to the method is also captured on the 
ontology graph. Therefore it fails to detect those relations 
that are formalised at hierarchical class level. For example, 
in Fig. 2, searching for the term "covariance" would fail to 
detect the method numbers 7 and 8 because in Fig. 1, there 
is no direct ontology relation presenting a call from the 
method 5 to 7 and 8. The relation to the concepts "index" 
and "volatility" is established through the concept 
"correlation". This is illustrated in Fig. 2 where the class 
ReaderCorrelation references the classes ReaderIndex and 
ReaderVolatility to access their methods 7 and 8.  

Also just following the call graph is not enough because 
the method 6 is not of interest for the search. Since classes 
implement the concepts, the ontology relations at class level 
need to be considered during a search. If the search starts at 
a method level then it won't find what is looked for if none 
of the methods in the class has the search terms in its name. 
For example, when searching for the concept "market 
value", the approach of [6] would not detect a method called 
writeMVAssetCalc(), called from the method actionCalc() in 
the class MarketHelperCalcMVDetail because none of the 
search words appear on any of the method names. The 
approach in [6] will be further investigated to determine the 
applicability of ontology relations at hierarchical levels. 

Additionally, there are many-to-many relations between 
the hard words extracted from the source code and the terms 
describing the concepts [4]. For example, the concept 
“standalone” is represented by the hard words std, stand or 
alone. Such many-to-many relations between the hard 

words and the terms will be mapped by utilising the 
generated OWL and stored in the corpus. This <hard_word, 
term> mapping will include all the hard words referring to a 
concept and the relation of that concept to other concepts. 
This type of mapping is to allow the detection of the n-gram 
concepts during a search activity. For example, hard words 
“std”, “stand” and “alone” will map to concept “standalone” 
which in turn will map to concept “risk” defined in OWL to 
represent the n-gram concept “standalone risk”. 

C. Search Engine 
When searching for the term “covariance”, the proposed 

approach will expand the query term with the related 
ontology concepts "correlation", "index" and "volatility" as 
defined in Fig. 1. The methods 1-5, 7 and 8 will be detected 
by hard word similarities. The search will also evaluate the 
call-graph relations catalogued in the corpus to filter out 
those classes that do not have any direct call references from 
the selected classes. For example, the classes without a 
direct call containing the hard words "correlation", "index" 
and "volatility" will be filtered. The method 1 is not called 
directly from the class “ReaderCorrelation” and will be 
omitted from the results. 

Subsequently, the ranking of the results will be 
established based on the frequency of the terms in the 
source code and in the text documentation [4].  

Finally, the results will be presented by grouping the 
extracted method signatures based on the call hierarchy 
distance identified in the call-graph to facilitate relevance. 
For example the methods 3, 7 and 8 are to be grouped under 
5. Similarly, the n-gram concepts will be searched by 
expanding the query term with their "isA" related concept 
from OWL and adding the related hard words from the 
corpus. For example, the query term "standalone" will 
include the query term "risk" and the hard words “std, stand 
and alone” to cater for "standalone risk". 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2.  Partial call graph of displaying "Covariance". 

  

 



In addition, we will conduct searches over the corpus 
using existing IR methods like LSI and cluster analysis 
(CA). In LSI, the corpus artefacts will be indexed and in 
CA, they will be grouped by applying an optimisation 
algorithm. Comparing the results against our gold standards 
[4], we hope the results will demonstrate the benefit of 
leveraging the contextual information captured by our 
approach in existing IR methods. 

D. Validation 
This research will be conducted using the financial 

applications at our industrial partner, a global financial IT 
solutions provider located in southern Germany. The 
approaches defined in [2] and [6] will be investigated to 
determine how well they perform when the relations 
between the source code entities are also considered using 
the domain specific ontologies. This will be measured by 
precision and recall. Comparing the results obtained from 
the generated corpus against the manually identified classes 
and concepts will assess the validity of the new concept 
mapping approach. The hypothesis is that the combination 
of the methods complemented by contextual information 
using domain specific ontologies will improve precision and 
recall results obtained in [4]. Although, the applicability of 
the research approach is demonstrated in the financial 
domain, the generalisability in other industries is only 
dependent on the definition of domain specific ontologies 
for that industry before it can be adopted.  

V. RESEARCH PHASES 
This research will be accomplished in two phases. First, 

in addition to the proposed approach, the manually created 
ontologies will be used to aid abbreviation expansion. The 
absence of domain knowledge creates challenges when 
choosing from multiple abbreviation expansion possibilities 
[11]. These will be addressed by enhancing the concepts 
with hasAttribute ontology relations [5]. For example, the 
concepts "correction asset" and “correlation” will have 
hasAttribute relation to term “corr”. So if the hard word 
“corr” is in a class representing the concept "asset" then it 
will be expanded as “correction” instead of “correlation”.  

In the second phase, based on the experience gained in 
mapping ontology to actual code and performing ontology 
guided concept location, the knowledge will be used to 
develop a novel approach to semi-automatically extract 
ontologies from the code. The approach will be validated 
first by extracting the domain specific ontologies from the 
financial application and comparing them against the 
manually extracted ones. Then, the technique will be used to 
extract the concepts from another application with similar 
domain concepts and will be validated by business analysts. 
Finally, Open Source Software like JDraw3 with widely 
known domain concepts will be used to demonstrate the 
generalisability of the approach. The hypothesis is that by 
following the call-graph and utilising “isA”, “hasPart” and 

“hasAtrribute” relationships will result in an improved 
approach to semi-automatically recover a first draft of 
domain ontologies from the code.  

So far, we have extracted the hard words from the source 
code and identified the concepts from the user guide [4]. We 
have also partially established their ontological relationships 
and obtained a static call-graph. Next, we will navigate the 
call-graphs to discover additional program elements and 
evaluate their relevance to improving precision. 

VI. CONTRIBUTIONS 
The importance of ontologies in reverse engineering has 

already been recognised, yet current approaches fall short of 
efficiently utilising the business domain ontologies 
illustrated in Fig.1. To achieve an accurate recovery of 
knowledge; there is a research opportunity to consider the 
domain specific ontologies during concept mapping and 
location activities.  

The main contribution of this research will be the 
development of a novel concept mapping approach by 
extending the methods defined in [2] and [6] with domain 
specific business ontologies. The approach will be utilised 
in reverse engineering source code to generate a corpus used 
in concept location activities to improve the detection of the 
program elements implementing n-gram concepts.  
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