
Improving Information Retrieval-Based Concept Location
Using Contextual Relationships

Tezcan Dilshener
Center for Research in Computing, Department of Computing

The Open University, United Kingdom

Abstract—For software engineers to find all the relevant
program elements implementing a business concept, existing
techniques based on information retrieval (IR) fall short in
providing adequate solutions. Such techniques usually only
consider the conceptual relations based on lexical similarities
during concept mapping. However, it is also fundamental to
consider the contextual relationships existing within an
application’s business domain to aid in concept location. As an
example, this paper proposes to use domain specific ontological
relations during concept mapping and location activities when
implementing business requirements.

Keywords-concept mapping; domain specific ontologies;
concept location; contextual relations

I. RESEARCH PROBLEMS
In software maintenance, prior to implementing business

requirements, the designated software engineer has to go
through the complex task of locating the relevant program
elements implementing the concept at hand. This search
activity is called the concept location. To influence the
concept location success rate in finding the relevant
program elements, researchers have used information
retrieval (IR) techniques like Latent Semantic Indexing
(LSI) [1]. Such techniques revealed that the relational
aspects of the terms extracted from the program identifiers
are also needed to obtain more effective results. Further
research has looked into term associations within the natural
language representation of the application’s source code to
map the conceptual relations [2]. In addition, these
approaches revealed that terms used to represent similar
meanings in computer science vocabulary, could have
different meanings in the English vocabulary. For example,
the term fire extracted from the identifier fireEvent is used
synonymously with the term notify extracted from identifier
notifyListener but the <notify, fire> pair do not commonly
relate with one another in English text [3].

Existing information retrieval techniques perform
concept location based on the lexical similarities of
vocabulary between the search terms and the terms
extracted from the source code identifiers. Some concepts
though cannot be directly identified by looking at the single
identifier names like the concept of standalone risk.
Multiple words (n-grams) put together describe these types
of concepts [4]. To catalogue such concepts, it is necessary
to consider the conceptual relations that exist within the
application’s business domain. Furthermore, current
techniques do not consider expanding the abbreviated forms
of the terms extracted from the source code identifiers [6]. It

is presumed that the identifiers e.g. method names, are made
up of single or compound well-formed English words. After
splitting them into terms, they are used directly to determine
their similarities to other terms or participate in some sort of
a part-of-speech tagging mechanism. However, it is
common to obtain ambiguous term definitions after
identifier splitting. For example, the term corr extracted
from the identifier corrAsset in a financial application
represents the concept correction asset but when it is
extracted from corrList it represents a list of correlation
concepts.

Therefore, formalising the relations between concepts to
represent the semantic information existing at a contextual
layer is needed during concept mapping. This would
improve the effectiveness of the concept location activities
by providing fundamental clues. For example, in the case of
“standalone risk”, the word “standalone” would convey a
conceptual meaning only when used together with the word
“risk” in a financial application’s domain.

In the following sections, a novel research approach is
proposed to address the stated problems by utilising the
contextual information that exists within an application’s
business domain captured in domain specific ontologies.
The captured context will be used in reverse engineering the
embedded knowledge from an application's source code to
generate a searchable corpus for use in concept location
activities. The corpus is the searchable intermediate form of
the application’s source code.

II. CURRENT RESEARCH
The literature on information retrieval identifies the LSI

technique as one of the most commonly used techniques to
support search engines [1]. LSI organises the occurrences of
artefacts (e.g. terms and documents) in a repository of term
by document matrix called the Vector Space Model (VSM).
In VSM, the possible term relations are not taken into
account when calculating their similarities. So, LSI applies
the Single Value Decomposition (SVD) principle to store
semantically related terms.

To represent the natural language (NL) relations existing
between the terms extracted from an application’s source
code, Hill et al. [2] constructed a NL representation of the
source code. This is achieved by applying linguistic phrase
structures like nouns and semantic usage information
obtained from mining the comments and word similarities.
The approach does not consider the structural information,
like caller-callee or inheritance relationships between the
source code entities. In the caller-callee relation, the caller

is the method calling the current method and the calle is the
method being called from the current method.

A promising approach to represent the relational context
of an application’s domain in software engineering is to
capture the knowledge embedded in the project artefacts in
domain specific ontologies. Ratiu et al. [5] extracted domain
ontologies from Java APIs using similarity/path matching,
like isA, hasPart relations, and validated them against the
manually defined concepts. Hayashi et al. [6] have
demonstrated the use of ontologies in concept location
process to recover the traceability link between a natural
language sentence and the related source code elements. A
shortcoming of Hayashi’s method is that the nodes from the
ontology graph are directly mapped to the method names.
Therefore during concept location the approach fails to
detect those classes implementing the related concepts that
use different words in the method names than those defined
in the ontology graph.

The use of ontologies to represent the domain
knowledge and then to utilise them during information
retrieval has long been exploited in the biomedical research.
The Open Biomedical Ontologies (OBO) consortium1
promotes the integration of biomedical data through the
annotation of multiple bodies using common controlled
vocabularies or ‘ontologies’ [7]. Witte et al. [8] applied the
ontology usage by integrating information retrieval between
biological databases and text research papers within a
biological application. In addition, Andreasen et al. [9]
articulate that ontologies representing specific domains can
be used to perform enhanced content-based text search.
They argue that searching textual data is progressing
towards a semantically oriented form and they present their
project where querying over the semantically formalised
biomedical text using ontology is achieved. However, the
need to validate the approach on large-scale industrial
applications is acknowledged.

III. RESEARCH QUESTIONS
Information retrieval methods expose common

challenges across different disciplines when searching for
the relevant pieces of information in a large data set. For
example, in biomedicine, a neuroscientist attempting to
extract information pertaining to the brain from the anatomy
data set structure with many relations would only be
interested in those relevant to the neuro-anatomical concepts
[10]. The neuroscientist can be compared to a software
engineer who is attempting to identify program elements
implementing a concept in a financial risk application with
several and relations. Hence, to address the problems stated
and gaps presented in the current techniques, there is a need
to investigate answers to the following research questions:

How can the use of contextual information captured by
domain specific ontologies (1) improve the concept mapping
during searchable corpus generation, (2) provide
meaningful clues to identify n-gram concepts during the
concept location activities.

IV. RESEARCH METHOD
The research method will involve the definition of a

semantic context, the development of a novel concept
mapping approach used to generate a searchable corpus and
a search engine for concept location.

A. Semantic Context
The definition of a semantic context addresses the formal

representation of business concepts implemented in an
application by using ontologies. First, the previously
extracted and validated financial business domain concepts
identified in [4] will be further analysed manually to define
the associations between each other. Second, this captured
domain specific semantic information will be formalised by
using the Ontology Web Language (OWL). It is stored as a
project artefact to be leveraged during corpus generation
and search activities. The OWL2 is a structural framework
for organising and representing information as a set of
concepts and their relations within a domain.

During the formalisation of the concepts, only isA and
hasPart relations will be considered [5]. The “isA” relation
describes the hierarchical association between a concept and
its super or subordinate, the “hasPart” describes the
properties of a concept. Figure 1 shows a partial
representation of the domain ontology for the “market
investment risk” module of the financial application [4]. The
two types of risk concepts, "diversified" and "standalone"
are associated with the concept "risk" using “isA” relation.
The “hasPart” relation is illustrated by the two properties of
the concept “index”, the concepts volatility and correlation.
In the context of this paper the "isA" relation is going to be
used to formalise the n-gram, compound concepts, like the
concept of "standalone risk".

B. Corpus Generation
The corpus will be created in three steps. The first step

will extract terms from the program identifiers, split and
store them in relational database by using the existing tools
as demonstrated in [4]. The second step will develop a new
concept mapping approach by extending the existing ones
defined in [2] and [6]. In the third step, a static call-graph is
going to be generated from the source code of the
application to catalogue the structural information, such as
caller-callee and inheritance relations amongst the program
elements.

The approach presented in [2] extracts nouns, verbs,
direct objects and prepositional phrases from method
signatures and identifiers to enable contextual searching.
The context fails to provide strong clues in detecting all the
relevant program elements, especially those ones where the
search terms are not used on the declaration of searched
elements. For example, Figure 2 illustrates the partial call
hierarchy graph of displaying the concepts "correlation" and
"covariance" to the user of the financial application.
Searching for the term "covariance" using the approach in 1. http://www.obofoundry.org

2. http://www.w3.org/TR/owl-features/

[2] detects the methods numbered 2, 4 and 5 but fails to
detect the methods numbered 3, 7 and 8. This is because the
context of the approach fails to provide relational clues. The
approach will be further investigated to determine its
extendibility by applying the domain specific ontologies to
provide stronger context during concept location.

Figure 1. Partial ontology of "Market Investment Risk".

The approach presented in [6] makes use of relational
information defined in ontology and in call graphs. The
relevance of the called element is determined based on
whether the call to the method is also captured on the
ontology graph. Therefore it fails to detect those relations
that are formalised at hierarchical class level. For example,
in Fig. 2, searching for the term "covariance" would fail to
detect the method numbers 7 and 8 because in Fig. 1, there
is no direct ontology relation presenting a call from the
method 5 to 7 and 8. The relation to the concepts "index"
and "volatility" is established through the concept
"correlation". This is illustrated in Fig. 2 where the class
ReaderCorrelation references the classes ReaderIndex and
ReaderVolatility to access their methods 7 and 8.

Also just following the call graph is not enough because
the method 6 is not of interest for the search. Since classes
implement the concepts, the ontology relations at class level
need to be considered during a search. If the search starts at
a method level then it won't find what is looked for if none
of the methods in the class has the search terms in its name.
For example, when searching for the concept "market
value", the approach of [6] would not detect a method called
writeMVAssetCalc(), called from the method actionCalc() in
the class MarketHelperCalcMVDetail because none of the
search words appear on any of the method names. The
approach in [6] will be further investigated to determine the
applicability of ontology relations at hierarchical levels.

Additionally, there are many-to-many relations between
the hard words extracted from the source code and the terms
describing the concepts [4]. For example, the concept
“standalone” is represented by the hard words std, stand or
alone. Such many-to-many relations between the hard

words and the terms will be mapped by utilising the
generated OWL and stored in the corpus. This <hard_word,
term> mapping will include all the hard words referring to a
concept and the relation of that concept to other concepts.
This type of mapping is to allow the detection of the n-gram
concepts during a search activity. For example, hard words
“std”, “stand” and “alone” will map to concept “standalone”
which in turn will map to concept “risk” defined in OWL to
represent the n-gram concept “standalone risk”.

C. Search Engine
When searching for the term “covariance”, the proposed

approach will expand the query term with the related
ontology concepts "correlation", "index" and "volatility" as
defined in Fig. 1. The methods 1-5, 7 and 8 will be detected
by hard word similarities. The search will also evaluate the
call-graph relations catalogued in the corpus to filter out
those classes that do not have any direct call references from
the selected classes. For example, the classes without a
direct call containing the hard words "correlation", "index"
and "volatility" will be filtered. The method 1 is not called
directly from the class “ReaderCorrelation” and will be
omitted from the results.

Subsequently, the ranking of the results will be
established based on the frequency of the terms in the
source code and in the text documentation [4].

Finally, the results will be presented by grouping the
extracted method signatures based on the call hierarchy
distance identified in the call-graph to facilitate relevance.
For example the methods 3, 7 and 8 are to be grouped under
5. Similarly, the n-gram concepts will be searched by
expanding the query term with their "isA" related concept
from OWL and adding the related hard words from the
corpus. For example, the query term "standalone" will
include the query term "risk" and the hard words “std, stand
and alone” to cater for "standalone risk".

Figure 2. Partial call graph of displaying "Covariance".

In addition, we will conduct searches over the corpus
using existing IR methods like LSI and cluster analysis
(CA). In LSI, the corpus artefacts will be indexed and in
CA, they will be grouped by applying an optimisation
algorithm. Comparing the results against our gold standards
[4], we hope the results will demonstrate the benefit of
leveraging the contextual information captured by our
approach in existing IR methods.

D. Validation
This research will be conducted using the financial

applications at our industrial partner, a global financial IT
solutions provider located in southern Germany. The
approaches defined in [2] and [6] will be investigated to
determine how well they perform when the relations
between the source code entities are also considered using
the domain specific ontologies. This will be measured by
precision and recall. Comparing the results obtained from
the generated corpus against the manually identified classes
and concepts will assess the validity of the new concept
mapping approach. The hypothesis is that the combination
of the methods complemented by contextual information
using domain specific ontologies will improve precision and
recall results obtained in [4]. Although, the applicability of
the research approach is demonstrated in the financial
domain, the generalisability in other industries is only
dependent on the definition of domain specific ontologies
for that industry before it can be adopted.

V. RESEARCH PHASES
This research will be accomplished in two phases. First,

in addition to the proposed approach, the manually created
ontologies will be used to aid abbreviation expansion. The
absence of domain knowledge creates challenges when
choosing from multiple abbreviation expansion possibilities
[11]. These will be addressed by enhancing the concepts
with hasAttribute ontology relations [5]. For example, the
concepts "correction asset" and “correlation” will have
hasAttribute relation to term “corr”. So if the hard word
“corr” is in a class representing the concept "asset" then it
will be expanded as “correction” instead of “correlation”.

In the second phase, based on the experience gained in
mapping ontology to actual code and performing ontology
guided concept location, the knowledge will be used to
develop a novel approach to semi-automatically extract
ontologies from the code. The approach will be validated
first by extracting the domain specific ontologies from the
financial application and comparing them against the
manually extracted ones. Then, the technique will be used to
extract the concepts from another application with similar
domain concepts and will be validated by business analysts.
Finally, Open Source Software like JDraw3 with widely
known domain concepts will be used to demonstrate the
generalisability of the approach. The hypothesis is that by
following the call-graph and utilising “isA”, “hasPart” and

“hasAtrribute” relationships will result in an improved
approach to semi-automatically recover a first draft of
domain ontologies from the code.

So far, we have extracted the hard words from the source
code and identified the concepts from the user guide [4]. We
have also partially established their ontological relationships
and obtained a static call-graph. Next, we will navigate the
call-graphs to discover additional program elements and
evaluate their relevance to improving precision.

VI. CONTRIBUTIONS
The importance of ontologies in reverse engineering has

already been recognised, yet current approaches fall short of
efficiently utilising the business domain ontologies
illustrated in Fig.1. To achieve an accurate recovery of
knowledge; there is a research opportunity to consider the
domain specific ontologies during concept mapping and
location activities.

The main contribution of this research will be the
development of a novel concept mapping approach by
extending the methods defined in [2] and [6] with domain
specific business ontologies. The approach will be utilised
in reverse engineering source code to generate a corpus used
in concept location activities to improve the detection of the
program elements implementing n-gram concepts.

REFERENCES
[1] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: Identifying

topics in source code,” Information and Software Technology, vol.
49, no. 3, pp. 230-243, Mar. 2007.

[2] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of NL-queries for software maintenance and
reuse,” in Proc. 31st IEEE ICSE, 2009, pp. 232-242.

[3] G. Sridhara et al., “Identifying Word Relations in Software: A
Comparative Study of Semantic Similarity Tools,” 2008, in Proc.
16th IEEE Int’l Conf. on Program Comprehension, pp. 123-132.

[4] T. Dilshener and M. Wermelinger “Relating Developers’ Concepts
and Artefact Vocabulary in a Financial Software Module,” in Proc.
27th IEEE Int’l Conference on Software Maintenance, 2011.

[5] D. Ratiu, M. Feilkas, and J. Jurjens, “Extracting Domain Ontologies
from Domain Specific APIs.,” IEEE, 2008, pp. 203-212.

[6] S. Hayashi, T. Yoshikawa, and M. Saeki, “Sentence-to-Code
Traceability Recovery with Domain Ontologies,” in Proc. 2010 Asia
Pacific Software Engineering Conference, 2010, pp. 385–394.

[7] B. Smith et al., “The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration,” Nat Biotechnol.
2007;25:1251–1255. doi: 10.1038/nbt1346.

[8] R. Witte et al., Combining Biological Databases and Text Mining to
support New Bioinformatics Applications. 10th Int’l Conference on
Applications of Natural Language to Information Systems (NLDB
2005), Springer LNCS 3513, 2005, pp. 310-321,

[9] T. Andreasen et al., “SIABO - Semantic Information Access through
Biomedical Ontologies”. In KEOD. Springer, October 2009.

[10] J.F. Brinkley, L.T. Detwiler, J.H. Gennari, C. Rosse, D. Suciu, “A
framework for using reference ontologies as a foundation for the
semantic web,” in Proc. AMIA Fall Symposium, 2006, pp. 95–100.

[11] E. Hill et al., “Amap: Automatically Mining Abbreviation
Expansions in Programs to Enhance Software Maintenance Tools,” in
Information Sciences, 2008, p. 79--88.

 3. http://jdraw.sourceforge.net/index.php?page=6

