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Abstract—To comprehend an unfamiliar application while 
implementing a change request, software developers perform 
lexical search and navigate the application’s structures as 
separate activities, while many methods need to be inspected to 
decide which path to take to locate the target. Instead of checking 
large number of individual methods, we address this challenge 
for developers by focusing on the fewer class names and class call 
relations. Our approach integrates lexical information retrieval 
with structural program dependency search to present a ranked 
list where the relevant classes for a change request are located in 
the top-N positions. Evaluated with six applications from five 
different domains, our integrated approach succeeded in finding 
relevant classes, with simple queries formulated from terse 
descriptions, on average for 72% of the change requests. 
Compared to a state-of-the-art tool, our tool outperformed it in 
19% of the cases while performing just as well in 72% of them. 
These results emphasize the need for combined tool support in 
effectively exploring applications during software maintenance. 

Keywords—business software maintenance; lexical search; call 
relations; change requests; domain vocabulary; empirical study. 

I.  INTRODUCTION 
As valuable and strategic assets to companies and playing a 

central role for the business, software applications require 
continued and substantial effort to be maintained. Often, 
software companies turn towards third-party developers to take 
over the maintenance tasks [9]. A high turnover among these 
developers and the impermanent nature of their employment 
cause the knowledge of the applications to move further away 
from its source. Each time a new developer is designated to 
perform a maintenance task, the associated high learning curve 
results in loss of precious time, incurring additional costs. As 
the documentation and other relevant project artefacts decay 
[11], to understand the current state of the application before 
implementing a change the designated developer has to go 
through the complex task of understanding the code. 

Generally, program comprehension during software 
maintenance can cause additional effort for those developers 
who have little domain knowledge. Early attempts to aid the 
developers in recovering traceability links between source code 
and documentation utilised Information Retrieval (IR) methods 
like the Vector Space Model (VSM) [8]. They achieved high 
recall, but due to low precision they required manual effort to 
evaluate the results [3]. To address the shortcomings of VSM, 
researchers applied Latent Semantic Indexing (LSI) models 
that resulted in higher precision values compared to VSM [14]. 
Nevertheless, these probabilistic IR approaches do not consider 

terms that are strongly related via structural information and 
thus still perform poorly in some cases [18]. 

The current research recognised the need for combining 
multiple analysis approaches on top of IR to support program 
comprehension [15]. To determine the starting points in 
investigating relevant program elements (i.e. classes and 
methods) during maintenance work, techniques combining 
dynamic [16] and static [20] analysis have been exploited [18]. 
These combined approaches first obtain a dynamic trace of the 
involved classes by re-running the scenarios described in the 
Change Request (CR) (e.g. bug descriptions or feature 
requests). From there on, they attempt to retrieve other relevant 
elements based on the call relations by navigating the static 
call-graph of the application. Some of the challenges faced by 
these approaches are that, on one hand, the CR documents may 
be tersely described or may be for a new non-existing feature 
[17], making them unsuitable for dynamic analysis [19]. On the 
other hand, the complex class method call relations (i.e. nodes 
and edges) found in the static call-graph may cause a lot of 
noise in the results [24]. Therefore it is still claimed that no 
single IR method consistently provides a superior recovery of 
traceability links between program elements and CRs [25]. 

Our aim is to identify the opportunities of using the CR 
vocabulary and the application call relations to address the 
challenges faced by the current combined approaches as well 
as to reduce the program comprehension overhead. To trace a 
CR to the source code, we first search the source code of an 
application using the vocabulary extracted from the CRs and 
then refine the search results by utilizing the additional clues 
provided by the call relations. It is acknowledged that during 
maintenance, developers perform search tasks using lexical 
information as well as navigate the structural information [22], 
thus we also combine these information sources. Compared to 
existing work on traceability between code and CRs, our 
unique contribution is in proposing a novel scoring system 
based on lexical similarity and call-relations. More precisely, 
we attempt to answer the following research questions: 

RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance 
with respect to a simple lexical string search?  

We conducted two types of searches, in both cases using 
the terms extracted from the CR descriptions. Since developers 
search for program elements, e.g. classes, using lexical match 
[12], the first search uses simple lexical string match by 
comparing the query terms with those extracted from the class. 



The second search assigns a score to the classes on the result 
list. The score is based on where the search terms occurred in 
the class and based on the call relations to the neighbouring 
classes. We compare the effectiveness of both search 
techniques to show the improvements obtained by our scoring 
method. 

RQ2: How does the combined approach, implemented in our 
tool, perform compared to another state-of-the-art tool?  

We compare the search performance of our tool with an 
existing bug localisation tool. For this, we have first conducted 
traceability searches with the tool presented in [10] to replicate 
the results of that study. We have then conducted the same 
searches on the same data sets with our tool. Finally, we 
compared the results obtained from both tools, highlighting the 
benefits provided by supplementing the lexical search with call 
relations. 

The rest of this paper is organized as follows: Section II 
explains the proposed approach, Section III describes the data 
collection procedure and analysis steps, Section IV presents the 
results in answering the research questions, and we discuss 
their implications to program comprehension in Section V. We 
describe related work in Section VI. Finally, Section VII 
concludes with additional remarks. 

II. METHODOLOGY 
A. Traceability through Information Retrieval 

In a typical Information Retrieval (IR) approach for 
traceability between an application’s source code and its 
textual documentation, like the CR documents, the current 
techniques first analyse the project artefacts and build an 
abstract high level representation of an application in a 
repository referred as the corpus where the program elements, 
e.g. classes, can be searched. 

The existing IR techniques extract the traceability 
information from class names, method signatures and 
identifiers by parsing the source code and storing the extracted 
information in the corpus. During the extraction process the 
identifier names are transformed into individual terms 
according to known OOP coding styles like the camel case 
naming pattern where, for example, identifier standAloneRisk 
is split into stand, alone and risk. After this transformation, the 
resulting terms are stored in the repository and indexed with a 
reference to their locations in the source code files. 

During a search, the underlying IR method, e.g. VSM or 
LSI, compares the terms entered in the query against the terms 
found in the indexed corpus. The matching score is calculated 
based on lexical similarity or probabilistic distance between the 
terms, depending on the IR method being used. To improve the 
ranking, one of the methods that existing approaches [22] 
utilise is to enhance the IR scoring by navigating the call-graph 
of the application and evaluating the relevance of the 
neighboring methods. Finally, the results are displayed to the 
developer in a list ranked by their relevance to the search. 

B. Our Approach 
As the current literature highlights [26], the IR approaches 

may consider two strongly related terms via structural 
information (i.e. OOP inheritance) to be irrelevant. In turn this 

may cause one method to be at the top of the result list and the 
other related one at the bottom. To cater for these structural 
relations, the static call-graph (CG) is utilized. However, the 
call-graphs usually contain many dependencies and very deep 
nodes/edges that make them impractical for search and 
navigation purposes [24]. 

To address these shortcomings, we propose a ranking 
approach that utilises a novel scoring system based on lexical 
similarity and application-only call-graph, where call-relations 
to 3rd party libraries are excluded. Our approach groups the 
relevant classes that are already found in a result list nearer to 
each other so that those relevant for the search remain within 
the top-N position of the list. This is achieved by applying a 
simple scoring to the found classes based on where the search 
terms appear, i.e. on the class name or in the class body. The 
score is further improved by exploiting the call relations in the 
application i.e. the number of calls coming in and going out of 
the found class. 

After creating a corpus from the application’s source code, 
including the call-relations between classes and the class terms 
(i.e. the terms extracted from the identifiers within a class), 
our approach works as described in the following steps. 

 
(1) Search for classes using the search terms extracted from 

the CR’s description. For each class, we iterate over the 
list of search terms and check if any of them match the 
class name or class terms. 

 
(2) Assign a score to the class based on where the search 

terms occur: in the class name, in the list of class terms, 
or the searched term is exactly the same as the class 
name. The class and its score are added to a list, as the 
pseudo code in Fig 1 illustrates.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Procedure for class scoring by Lexical match.  

(3) For each class in the ranked list, we adjust the score 
based on the call-relations, by navigating the call-graph 
to the immediate neighboring called or calling classes. 
Only those classes that are already in the ranked list are 
considered, to avoid introducing false positives in the 

Function: relevantClassScoring() 
Inputs:  list of class name with terms; search terms  
Output: ranked list of relevant classes 
 

for each class with term list { 
      score = 0.0; 
      for each search term { 
 

 if (search term == class name)  
       score += 1.0000f; 

 else if (search term occurs in the class name) 
        score += 0.0250f; 
 else if (search term exists in class term list) 
        score += 0.0125f; 
      } 
      add class name and score to ranked result list 
} 
enhanceClassScoring(ranked result list);  



context of a CR, where a subset of classes are usually 
relevant. The score of an already ranked class is re-
calculated: if many other classes call it then it is a utility 
function (decrease score), otherwise it has core 
functionality (increase score), as Fig 2 illustrates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Procedure for improving the ranking results by call relations.  

(4) Sort the list using the new score and discard the 
absolute score value. We will use top-10 as the cut-off 
point when measuring the performance of our approach, 
to make it comparable with existing work. The top-10 
list includes only the classes whose score caused them 
to be placed between the 1st and 10th positions.  

 
In cases where a lexical score cannot be assigned by 

relevantClassScoring due to the query terms not matching the 
terms extracted from the class name and identifiers, a 
probabilistic score is obtained by repeating the search with the 
IR model VSM. This score qualifies the class to be processed 
by the enhanceClassScoring function where the call-relations 
are evaluated as described in Step 3. 

The rationale behind the scoring values is that class names 
are treated as the most important elements and are assigned the 
highest weight. So when a query term is identical to a class 
name, it is considered a 100% match and an arbitrary score of 
1.0000 is assigned to it. Otherwise, the occurrence of the query 
term on the class name is considered to have higher importance 
over the terms extracted from the identifiers or method 
signatures. In those cases, arbitrary scores of 0.0250 and 
0.0125 are assigned, respectively. Subsequently, to further 
optimise the grouping of relevant classes nearer to each other 
in the ranked result list, the call relations are evaluated. During 
this stage the score of core functionality classes are boosted by 
a factor of 0.0525 while those with utility function are reduced 
by a factor of 2.5000. Finally, the derived score is used for 
relative ranking and the absolute score value is dismissed. 
There is no magic in choosing the values for these factors: our 
algorithm was run using a small size dataset of manually 
selected CRs from each application, and we made adjustments 
to the scores to optimize the results for that training dataset.  

III. CASE STUDY DESIGN 
In order to evaluate the effectiveness of our approach, we 

analysed the source code of six applications addressing five 
independent domains: finance, integrated development 
environment (IDE), aspect-oriented programming, graphical 
user interface (GUI) and bar-code.  
 
A. Subject applications  

For the finance domain, we used two financial applications, 
one open source (OSS), referred to as Pillar-One, and one 
proprietary, due to confidentiality referred as Pillar-Two. Both 
applications implement the financial regulations for credit and 
risk management defined by the Basel-II1 Accord [4]. Pillar-
One2 is a client/server application developed in Java and 
Groovy by Munich Re (a re-insurance company). The CR 
documents are maintained with JIRA3, a public tracking tool. 
Pillar-Two is a web-based application developed using the Java 
programming language at our industrial partner’s site and is not 
publicly available. It has been in production for 4 years. The 
maintenance and further improvements are undertaken by five 
developers, including in the past the first author, none of them 
part of the initial team. The CR documents are maintained by a 
proprietary tracking tool. 

For the other four domains we used the same applications 
investigated by the authors of [10] allowing us to compare our 
tool with theirs: the IDE tool Eclipse4, the aspect-oriented 
programming library AspectJ5, the GUI library SWT6 and the 
bar-code tool ZXing7. Eclipse and AspectJ are well-known 
large scale applications used in many empirical research 
studies for evaluating various IR models [30]. SWT is a 
subproject of Eclipse and ZXing is an Android project 
maintained by Google8. Table I shows the size of the project 
artefacts for all of the applications. 

TABLE I.  PROJECT ARTEFACTS SIZE 

Application Source 
files 

CRs Call 
relations  

AspectJ  6485 286 3203 
Eclipse (v3.1) 12863 3075 81177 
Pillar-One (v1.6) 4355 26 7827 
Pillar-Two (v7.0) 337 12 407 
SWT (v3.1) 484 98 1268 
ZXing  391 20 982 

 
B. Data collection 

We obtained the complete code and CR for all applications. 
The CRs were already implemented for the versions of the 
applications being analysed. In case of Pillar-Two, the affected 
source code files (Java classes) are already listed in the CR 
documents. In case of Pillar-One, the CR documents included 

Function: enhanceClassScoring() 
Inputs:  list of ranked classes; call relations between classes  
Output: improved list of ranked classes 
 

for each ranked class r { 
 

     if (r has a caller/callee call-relation) 
 

           for each class c that call(c, r) or call(r, c) { 
 

  if (c is in the ranked list) 
       if (number of call-relations of c < 10)  

// called/calling class has core functionality 
score of c += 0.0525f; 

      else 
  // called/calling class has utility function 

score of c -= 2.5000f; 
           } 
} 

_________________________________________________________ 
1. http://www.bis.org 
2. http://www.pillarone.org 
3. https://issuetracking.intuitive-collaboration.com 
4. http://www.eclipse.org 
5. http:// www.st.cs.uni-saarland.de/ibugs/ 
6. http://www.eclipse.org/swt/ 
7. http://code.google.com/p/zxing/ 
8. https://source.android.com/ 



to the source code repository commits reference numbers. By 
manually analysing these references in the repository, we have 
listed all the affected classes per CR in one document. In case 
of the other four applications, i.e. Eclipse, AspectJ, SWT and 
ZXing, we are grateful to Zhang et al. [10] for providing their 
data sets, which included for each application the source code 
and a document containing all CRs with affected classes. 

C. Corpus preparation  
The obtained project artefacts, i.e. the source code files and 

the CRs, were processed using our source code analysis 
framework tool called ConCodeSe (Contextual Code Search 
Engine). We implemented the proposed scoring and ranking 
approach (Section II) in ConCodeSe by extending our previous 
work [2]. ConCodeSe utilises state of the art data extraction, 
persistence and search APIs (SQL, Lucene9, Hibernate10, JIM 
[5]). Figure 3 illustrates the extraction, storage, search and 
analysis stages. In the top layer, the corpus creation and search 
services tasks are executed automatically. 

 
Fig. 3.  ConCodeSe Data Extraction, Storage and Search. 

The left hand side (1) represents the extraction and storage 
of terms from the source code files and from the CRs. The 
middle part (2) shows the extraction and storage of the call-
graph information from the application binary files. Finally, in 
the search stage (3), the search for the classes affected by the 
CRs takes place. The search results are saved in a spreadsheet 
for additional statistical code analysis like the Spearman 
correlation coefficients tests [6]. 
 
1a. Source code vocabulary processing.  

In the first stage, the Java and Groovy sources are parsed 
using the source code-mining tool JIM, which automates the 
extraction and analysis of identifiers from source files. It parses 
the source, extracts the identifiers and splits them into terms. 
During this step, the identifiers and metadata from the source 
code abstract syntax tree are extracted and added to a central 
store, with information about their location. Also, the tool 
INTT [10, 12] within JIM is used to tokenise and split the 
identifier names into terms. INTT uses camel case, separators 
and other heuristics to split ambiguous boundaries, digits and 
lower cases. The extracted information, i.e. the identifier 

names, their tokenisation and source code location, is stored in 
a Derby11 relational database.  

1b. Textual documentation vocabulary processing. 
Also for the first stage, we developed a Java module using 

the Lucene framework to tokenise the text in the CR 
documents into terms. The module reuses Lucene’s Standard-
Analyzer class because it tokenises alphanumerics, acronyms, 
company names, and email addresses, etc. using a JFlex-based 
lexical grammar. It also includes stop-word removal. We used 
a publicly available stop-words list12 to filter them out. The 
extracted information is stored via the Hibernate persistence 
API in the same Derby database.  
 
2. Call-relations processing. 

For the second stage, we developed a Java call-graph 
construction module using the ASM13 tool. ASM is a simple 
API for decomposing, modifying, and recomposing binary Java 
classes. Our module reads the classes contained in the binary 
file of the application and builds a list of called classes (callee) 
and a list of calling classes (caller). Both the calleràcallee  
and the calleeàcaller relations are stored in the same Derby 
database for use in the search stage to improve the scoring of 
the ranked classes in the result list. The constructed call-graph 
is an application-only call-graph [24] where calls to external 
libraries are ignored and only the call relations between the 
classes within the application packages are considered.  

3. CRs Search. 
For the third stage of the process, we developed a search 

module in ConCodeSe that runs SQL queries to search (1) for 
the occurrences of the terms in the project artefacts and (2) for 
all the relevant classes of a CR. The manually identified classes 
affected by each CR are used to compute precision and recall 
of the search results. Recall measures the completeness of the 
results and precision measures the accuracy of the results. 

IV. EVALUATION RESULTS 
Our approach considers the immediate neighbouring 

classes in the call graph and introduces a scoring technique to 
determine the relevance of a class to the search query terms. In 
[25] it is concluded that exploring 1 to 2 edges and top-5 to 
top-10 gives the best results. Therefore to further compare the 
effectiveness of our approach with the proposed method in 
[10], we used top-N ranking. In the rest of the paper, we 
consider a class to be located if it was ranked in the top-N for 
some N, and we consider a CR to be located if at least one of 
its affected classes was located. 

 
RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance 
with respect to a simple lexical string search? 

Our first aim was to check whether simple string searching 
with CR terms is sufficient to find the affected classes. The 

___________________________________________________________ 
9. http://lucene.apache.org/java/docs/index.html 
10. http://www.hibernate.org 
11. http://db.apache.org/derby 
12. http://norm.al/2009/04/14/list-of-english-stop-words/ 

13. http://asm.ow2.org/ 



search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

Applications CRs Simple lexical 
match 

Lexical scoring + 
call relations  

AspectJ 286 32 
(11%) 

178 
(62%) 

Eclipse 3075 357 
(12%) 

1651 
(54%) 

Pillar-One 26 5 
(19%) 

15 
(58%) 

Pillar-Two 12 6 
(50%) 

11 
(92%) 

SWT 98 25 
(26%) 

82 
(84%) 

ZXing 20 0 
(0%) 

16 
(80%) 

Average  19% 72% 
 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 
Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 



performed the following tasks. First, we have conducted 
searches with BugLocator [10] and obtained the same results as 
reported on that study using their data set. Second, we have 
conducted the same searches using the data set of [10] with our 
tool. We als run both tools on our own data sets, Pillar-One and 
Pillar-Two. Finally, we compared the results obtained from 
both tools. 

BugLocator implements an approach similar to ours. It is 
initiated with a list of closed bug reports that reference the 
effected files. First, it creates an indexed corpus of terms 
extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

Applications CRs Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Aspectj 286 65 

(23%) 
67 

(23%) 
186 

(65%) 
159 

(56%) 
Eclipse 3075 749 

(24%) 
770 

(25%) 
1719 

(56%) 
1615 

(53%) 
Pillar-One 27 5 

(19%) 
7 

(26%) 
10 

(37%) 
14 

(52%) 
Pillar-Two 12 2 

(17%) 
6 

(50%) 
6 

(50%) 
10 

(83%) 
SWT 98 31 

(32%) 
54 

(55%) 
76 

(78%) 
81 

(83%) 
ZXing 20 8 

(40%) 
6 

(30%) 
14 

(70%) 
17 

(85%) 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 

CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

AspectJ 
  

39 
(14%) 

84 
(29%) 

224 
(78%) 

161 
(56%) 

23 
(8%) 

41 
(14%) 

 Eclipse 325 
(11%) 

381 
(12%) 

2220 
(72%) 

1839 
(60%) 

529 
(17%) 

854 
(28%) 

 Pillar1 5 
(19%) 

10 
(37%) 

20 
(74%) 

14 
(52%) 

2 
(7%) 

3 
(11%) 

 Pillar2 4 
(33%) 

8 
(67%) 

8 
(67%) 

2 
(17%) 

0 
(0%) 

2 
(17%) 

 SWT 29 
(30%) 

21 
(21%) 

59 
(60%) 

60 
(61%) 

10 
(10%) 

17 
(17%) 

 ZXing 1 
(5%) 

3 
(15%) 

16 
(80%) 

15 
(75%) 

3 
(15%) 

2 
(10%) 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 
for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

AspectJ 
  

24 
(8%) 

57 
(20%) 

231 
(81%) 

174 
(64%) 

31 
(11%) 

55 
(19%) 

 Eclipse 171 
(6%) 

221 
(7%) 

225 
(72%) 

1689 
(55%) 

678 
(22%) 

1164 
(38%) 

 Pillar1 3 
(11%) 

8 
(30%) 

20 
(74%) 

15 
(56%) 

4 
(15%) 

4 
(15%) 

 Pillar2 1 
(8%) 

4 
(33%) 

9 
(75%) 

8 
(67%) 

2 
(17%) 

0 
(0%) 

 SWT 21 
(21%) 

17 
(17%) 

63 
(64%) 

63 
(64%) 

14 
(14%) 

18 
(18%) 

 ZXing 1 
(5%) 

1 
(5%) 

16 
(80%) 

14 
(70%) 

3 
(15%) 

5 
(25%) 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 



SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

Applications CRs BugLocator 
MAP 

ConCodeSe  
MAP 

AspectJ 286 0.17 0.33 

Eclipse 3075 0.26 0.30 

Pillar-One 26 0.18 0.26 

Pillar-Two 12 0.28 0.39 

SWT 98 0.40 0.59 

ZXing 20 0.41 0.43 

 
As the results in Table X show, our tool achieved 

significant gains particularly in case of AspectJ and Pillar-One 

applications where the MAP values improved almost 90% 
from 0.17 to 0.33 and from 0.18 to 0.26 respectively. In case 
of Pillar-Two and SWT applications, our tool achieved 40% 
improvement. However, in case of Eclipse and ZXing 
applications the improvements in MAP values remained 
minimal. Given that performance on individual queries is 
expected to be highly variable [26], overall performance of 
ConCodeSe remains superior. 

V. DISCUSSION 
Our study set out to explore whether supplementing lexical 

searches with call relationship data would noticeably improve 
the search accuracy revealed that it does as illustrated in Table 
IV. Overall, as illustrated in Tables VI and VII, we observed 
that enhancing the lexical scoring with call-relations leads to 
superior search results over the probabilistic methods (i.e. 
VSM). The added value of our proposed approach compared to 
existing work [23] is that it combines simple lexical search and 
call-graph navigation techniques, which improves upon the 
weaknesses of current approaches that use probabilistic 
methods like VSM or LSI where two classes may be 
considered irrelevant although structurally related. 

Our approach, implemented in our tool ConCodeSe, 
improves on the result presented in [10] using the same data 
set, indicating that utilising simple vocabulary match with call-
relations aids search performance as Table VI shows. We 
observed that the direct nature of call-relations facilitates 
search to focus on a specific CR and provides entry points to 
the relevant classes within the context of the CR, which 
supports the efforts of Petrenko et al. [26] on using program 
dependencies when navigating the call graph during a search. 
Another reason for the success of our approach is that utilising 
the call-relations groups the relevant classes together within the 
context of the search, which adds to the findings of Scanniello 
et al [29] on clustering i.e. grouping of classes during static bug 
localisation search. 

It has been long argued that textual information in CR 
documents is noisy [28]. In addition, we found that CRs reveal 
two characteristics: (1) developer nature with technical details 
i.e. references to code classes or (2) descriptive nature with 
business terminology i.e. use of concept terms. This also 
confirms the reasons why some classes are ranked in the top-10 
whereas others aren’t as Table VII illustrates. In other words, 
CR documents may be divided into two categories, those that 
rely on implementation vocabulary (class names) and those that 
use domain vocabulary; and the two vocabularies produce 
different results. In both cases, the CRs tend to be of an action-
oriented nature, which does not provide clues to the domain 
vocabulary being addressed directly or the class names do not 
reflect domain terms explicitly [2]. Due to these characteristics, 
the existing concept location techniques fall short in bug 
localisation when a CR is not properly declaring a concept to 
be searched or the class names do not reflect those related 
concepts. 

Although multiple classes may implement a concept [1], in 
the data sets analysed on average only 3 classes listed as being 
changed. This suggests that CRs are for a unit-of-work and 
searching for the relevant classes using terms would find all the 



classes implementing a concept. Hence in the context of a CR 
this would lead to many false positives. Also in certain cases, 
we have observed that the affected classes of a CR do not have 
any call-relations. Consequently, in those cases navigating the 
call-graph does not provide any information to re-rank relevant 
classes at a higher position in the list. This provides further 
evidence that one cannot rely on the code as the single source 
of information. 

Since CR documents may come from a group of people 
who are unfamiliar with the vocabulary used in the code and in 
the documentation, we propose that these documents contain a 
section for describing the relevant domain vocabulary. For 
example a list of domain terms implemented by an application 
can be semi-automatically extracted and imported into the CR 
management tool. Subsequently, when creating a CR, the user 
may choose from the list of relevant domain terms or the tool 
may intelligently suggest the terms for selection. Also, to deal 
with crosscutting concerns as illustrated by Shepherd et al [13], 
we recommend packaging the source code classes in 
architectural layers based on conceptual responsibility instead 
of technical functionality. This would first mediate improved 
communication with business users, since such 
communications take place at a conceptual level rather than 
technical level, and second assist in finding relevant classes by 
considering the architectural relations when no call-relations 
exist. 

In software projects, a developer may get assistance from 
other team members or expert users when selecting the initial 
entry points to perform the assigned maintenance tasks. Our 
tool complements this by providing a contextual model i.e. 
corpus with set of clues to aid program comprehension during 
software maintenance. It allows developers to select the initial 
entry points based on the ranking of the relevant classes. Thus 
the CR vocabulary can be seen as the assistance provided by 
the expert team members and the class names in the search 
results can be seen as the initial entry points to investigate 
additional relevant program elements. 

A. Threats to Validity 
The construct validity addresses whether the conclusions 

can legitimately be made from the operationalisation of the 
theories. During creation of the searchable corpus by extracting 
the terms form source code identifiers, we relied on the JIM 
tool and on the ASM framework for generating the call-
relations from the binary files. Although these tools were used 
in previous studies [10, 12], it is possible that other tools may 
produce different results. Also, we used arbitrary score values 
to assign weight to the classes in order to rank them in the 
result list. Although we took all precautions to avoid bias by 
manually training the scoring algorithm using a small dataset, 
we intend to use machine learning to train the algorithm in our 
future work. Furthermore, we intend to consider the domain 
concept relations and the method call-relations in addition to 
class call-relations. 

The internal validity addresses the relationship between the 
cause and the effect of the results to verify that the observed 
outcomes are the natural product of the implementation. We 
catered for this by comparing like for like (i.e., using the same 
datasets and the same criteria) the search performance of our 

tool with an existing bug localisation tool [10]. Therefore, the 
improvement in results can only be due to our approach. Also, 
the queries in our study were taken directly from CR 
descriptions. It is possible that these queries may inaccurately 
reflect the queries developers use or that the use of different 
queries with vocabularies more inline with the source code 
would yield better results. However, using the CR descriptions 
as queries instead of manually formulated queries avoided the 
introduction of bias from the authors. 

The conclusion validity refers to the relationship between 
the treatment and the outcome and if it is statistically 
significant. We used a non-parametric statistical test since no 
assumptions were made about the distribution of the results. 
This test is quite robust and has been extensively used in the 
past to conduct similar analysis [38, 41]. The results showed 
that the improvement in locating relevant classes for a CR in 
the top-N position by our tool over the state of the art tool is 
significant. Also we used a VSM model IR engine as a fall-
back option for lexical search. It is conceivable that an IR 
engine using the LSI model may produce more or less sensitive 
results. We plan to experiment with LSI in future work. 

The external validity addresses the possibility of applying 
the study and results to other circumstances. The characteristics 
of the projects (the domain, the terse CRs, the naming 
conventions, the kind of documentation available) are a threat 
to external validity. We catered for this by repeating the search 
experiments with different applications addressing multiple 
domains for comparison. We intend to repeat the experiments 
with other projects and artefacts in particular with more 
industrial applications and with those developed in object-
oriented programming languages other than Java for 
comparison. 

Finally, with regards to the complexity of our approach and 
the computation times, we observed that creating the corpus by 
processing the application’s source code, CR descriptions, call 
relations and searching for relevant classes for all CRs takes on 
average 2 minutes per application on a single high end PC (i.e. 
3GHz processor and 4GB RAM), except for the Eclipse 
project. Due to its size (Table I), creation of the corpus takes 3 
hours and ranking classes for all CRs takes about 1.5 hours, 
which gives an average of almost 2 seconds per CR. We 
consider this to be acceptable since our tool is a proof of 
concept and in reality developers intend to search for one CR at 
a time. We intend to improve the run-time performance by 
using multi-threaded programming in our future work. 

VI. RELATED WORK 
Antoniol et al. [3] aimed to check whether source code 

classes could be traced back to the functional requirements. 
The terms from the source code were extracted by splitting the 
identifier names, and the terms from the documentation were 
extracted by normalising the text using transformation rules. 
They created a matrix listing the classes to be retrieved by 
querying the terms extracted from the text document. The 
method relied on probabilistic and vector space information 
retrieval and ranked the documents against a query. Applying 
precision and recall validated their results. Although the 
authors compare two different retrieval methods (VSM and 
probabilistic), they conclude that semi-automatically 



recovering traceability links between code and documentation 
is achievable despite the fact that the developer has to analyse a 
number of sources during a maintenance task to get high values 
of recall. Our work differs in that it uses call graphs and is 
geared towards maintenance, because we attempt to recover 
traceability between CRs and source code classes. 

On the use of call relations to recover traceability links, Hill 
et al. [22] and P. Shao et al. [21] proposed similar approaches 
to ours. In their approaches a query is created with search 
terms, then the source code is searched for the matching 
methods by using the probabilistic LSI method and a 
term/document frequency (tf/idf) score is obtained. 
Subsequently, for each method on the result list, the call-graph 
of the application is utilized to evaluate the relevance of the 
neighbouring methods. A score is assigned based on where the 
query terms occur in the method names, in addition to the LSI 
score. Finally, both scores are combined to rank the methods 
into the final search result list. Our work differs in that we first 
perform a simple lexical search for the affected classes instead 
of the methods. Subsequently we improve the score by 
evaluating the call-relations found on the static call graph based 
on the number of edges coming in and going out of the 
neighbouring classes. In [27] it is proposed that methods 
calling many other methods can be seen as delegating and 
methods called by others as performing functionality. Finally, 
our approach ranks the results based on the combined score to 
list relevant classes in the top-10 position of the result list, as 
the current literature concludes that top-5 to top-10 gives the 
best results [25]. 

In their study, Petrenko et al. [26] presented a technique 
called DepIR that combines Dependency Search (DepS) with 
Information Retrieval (IR). The technique uses an initial query 
to obtain a ranked list of retrieved methods. The 10 methods 
with the highest ranks are selected as the possible entry points 
to explore the shortest path on the call-graph to the method 
relevant for the query. The shortest path is calculated using 
Dijkstra’s algorithm [31] and the effort needed is calculated as 
the number of edges (call-relations) on the shortest path plus 
the IR rank. The study aims to indicate a best-case scenario 
estimate of the effort needed to locate the relevant method for 
each CR. The DepIR performance is compared against pure IR 
and DepS (a call-graph navigation technique) by using 5 
systems and 10 CR. It is claimed that on average, DepIR 
required a significantly smaller effort to locate the relevant 
methods for each CR. The study only aims to evaluate the 
theoretical effort reduction in finding the target method by 
combining lexical ranking with dependency navigation. 
Therefore it requires the target method to be known in advance, 
in the same way we need to know the affected classes to 
evaluate our search algorithm, which doesn’t require prior 
knowledge of what classes need to be changed. Contrary to our 
approach, DepIR doesn’t make use of the dependencies to 
improve the ranking, and thus to further reduce the effort in 
finding the right artefacts to change. 

Zhou et al. [10] proposed a state-of-the-art traceability tool 
called BugLocator that automatically searches for relevant 
source code files based on relevant bug reports. Utilising 
common bug localisation processes, the approach consists of 
four steps: corpus creation, indexing, query construction, 

retrieval & ranking. The method uses a revised Vector Space 
Model (rVSM) to rank all source code files based on an initial 
bug report. BugLocator has been evaluated with four open 
source projects and the results show that on average 60% of 
relevant classes reported as changed are ranked in top-10 
position of the result list. For the open-source case studies, 
BugLocator outperformed existing VSM approaches in feature 
location tasks. However, the need to evaluate the tool's 
effectiveness with industrial projects was acknowledged. 
Since our work also involves industrial code, we performed 
the same search tasks with BugLocator in place of our tool and 
compared the results.  

VII. CONCLUDING REMARKS 
We presented a novel algorithm that, given a change 

request (CR) and the application’s code, uses a combination of 
lexical and structural information to suggest, in a ranked order, 
classes that may have to be changed to implement the CR. The 
approach doesn’t require test harnesses or dynamic analysis, 
and it can handle bug reports, feature requests, and very terse 
CRs.  

We evaluated the algorithm with a range of applications, 
and found that it is vastly superior to simple string search, as 
performed by developers using an IDE. We compared the 
search results to an existing approach, using the same CRs, 
applications and evaluation criteria, and found that overall our 
approach improved the ranking of the affected classes, thereby 
increasing the percentage of CRs for which relevant classes are 
retrieved and the number of relevant classes suggested among 
the top-1 or top-10.  

We found that including source code comments for the 
lexical scoring may be helpful for particular CRs, but that 
overall it decreases the search performance. 

Our study shows that it is challenging to find the classes 
referred by a CR: in spite of our improvements, over 40% of 
CRs may not be localised (Table IV). In order to help better 
understand and develop new search approaches, we will offer 
in an online companion to this paper, the datasets of our case 
study as a baseline for further bug localisation research. 
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