
Improving Bug Localisation Using Lexical
Information and Call Relations

Tezcan Dilshener Michel Wermelinger Yijun Yu
Computing and Communications Department

The Open University, United Kingdom

Abstract—To comprehend an unfamiliar application while
implementing a change request, software developers perform
lexical search and navigate the application’s structures as
separate activities, while many methods need to be inspected to
decide which path to take to locate the target. Instead of checking
large number of individual methods, we address this challenge
for developers by focusing on the fewer class names and class call
relations. Our approach integrates lexical information retrieval
with structural program dependency search to present a ranked
list where the relevant classes for a change request are located in
the top-N positions. Evaluated with six applications from five
different domains, our integrated approach succeeded in finding
relevant classes, with simple queries formulated from terse
descriptions, on average for 72% of the change requests.
Compared to a state-of-the-art tool, our tool outperformed it in
19% of the cases while performing just as well in 72% of them.
These results emphasize the need for combined tool support in
effectively exploring applications during software maintenance.

Keywords—business software maintenance; lexical search; call
relations; change requests; domain vocabulary; empirical study.

I. INTRODUCTION
As valuable and strategic assets to companies and playing a

central role for the business, software applications require
continued and substantial effort to be maintained. Often,
software companies turn towards third-party developers to take
over the maintenance tasks [9]. A high turnover among these
developers and the impermanent nature of their employment
cause the knowledge of the applications to move further away
from its source. Each time a new developer is designated to
perform a maintenance task, the associated high learning curve
results in loss of precious time, incurring additional costs. As
the documentation and other relevant project artefacts decay
[11], to understand the current state of the application before
implementing a change the designated developer has to go
through the complex task of understanding the code.

Generally, program comprehension during software
maintenance can cause additional effort for those developers
who have little domain knowledge. Early attempts to aid the
developers in recovering traceability links between source code
and documentation utilised Information Retrieval (IR) methods
like the Vector Space Model (VSM) [8]. They achieved high
recall, but due to low precision they required manual effort to
evaluate the results [3]. To address the shortcomings of VSM,
researchers applied Latent Semantic Indexing (LSI) models
that resulted in higher precision values compared to VSM [14].
Nevertheless, these probabilistic IR approaches do not consider

terms that are strongly related via structural information and
thus still perform poorly in some cases [18].

The current research recognised the need for combining
multiple analysis approaches on top of IR to support program
comprehension [15]. To determine the starting points in
investigating relevant program elements (i.e. classes and
methods) during maintenance work, techniques combining
dynamic [16] and static [20] analysis have been exploited [18].
These combined approaches first obtain a dynamic trace of the
involved classes by re-running the scenarios described in the
Change Request (CR) (e.g. bug descriptions or feature
requests). From there on, they attempt to retrieve other relevant
elements based on the call relations by navigating the static
call-graph of the application. Some of the challenges faced by
these approaches are that, on one hand, the CR documents may
be tersely described or may be for a new non-existing feature
[17], making them unsuitable for dynamic analysis [19]. On the
other hand, the complex class method call relations (i.e. nodes
and edges) found in the static call-graph may cause a lot of
noise in the results [24]. Therefore it is still claimed that no
single IR method consistently provides a superior recovery of
traceability links between program elements and CRs [25].

Our aim is to identify the opportunities of using the CR
vocabulary and the application call relations to address the
challenges faced by the current combined approaches as well
as to reduce the program comprehension overhead. To trace a
CR to the source code, we first search the source code of an
application using the vocabulary extracted from the CRs and
then refine the search results by utilizing the additional clues
provided by the call relations. It is acknowledged that during
maintenance, developers perform search tasks using lexical
information as well as navigate the structural information [22],
thus we also combine these information sources. Compared to
existing work on traceability between code and CRs, our
unique contribution is in proposing a novel scoring system
based on lexical similarity and call-relations. More precisely,
we attempt to answer the following research questions:

RQ1: Does utilizing a combined approach based on lexical
information and call relations improve the search performance
with respect to a simple lexical string search?

We conducted two types of searches, in both cases using
the terms extracted from the CR descriptions. Since developers
search for program elements, e.g. classes, using lexical match
[12], the first search uses simple lexical string match by
comparing the query terms with those extracted from the class.

The second search assigns a score to the classes on the result
list. The score is based on where the search terms occurred in
the class and based on the call relations to the neighbouring
classes. We compare the effectiveness of both search
techniques to show the improvements obtained by our scoring
method.

RQ2: How does the combined approach, implemented in our
tool, perform compared to another state-of-the-art tool?

We compare the search performance of our tool with an
existing bug localisation tool. For this, we have first conducted
traceability searches with the tool presented in [10] to replicate
the results of that study. We have then conducted the same
searches on the same data sets with our tool. Finally, we
compared the results obtained from both tools, highlighting the
benefits provided by supplementing the lexical search with call
relations.

The rest of this paper is organized as follows: Section II
explains the proposed approach, Section III describes the data
collection procedure and analysis steps, Section IV presents the
results in answering the research questions, and we discuss
their implications to program comprehension in Section V. We
describe related work in Section VI. Finally, Section VII
concludes with additional remarks.

II. METHODOLOGY
A. Traceability through Information Retrieval

In a typical Information Retrieval (IR) approach for
traceability between an application’s source code and its
textual documentation, like the CR documents, the current
techniques first analyse the project artefacts and build an
abstract high level representation of an application in a
repository referred as the corpus where the program elements,
e.g. classes, can be searched.

The existing IR techniques extract the traceability
information from class names, method signatures and
identifiers by parsing the source code and storing the extracted
information in the corpus. During the extraction process the
identifier names are transformed into individual terms
according to known OOP coding styles like the camel case
naming pattern where, for example, identifier standAloneRisk
is split into stand, alone and risk. After this transformation, the
resulting terms are stored in the repository and indexed with a
reference to their locations in the source code files.

During a search, the underlying IR method, e.g. VSM or
LSI, compares the terms entered in the query against the terms
found in the indexed corpus. The matching score is calculated
based on lexical similarity or probabilistic distance between the
terms, depending on the IR method being used. To improve the
ranking, one of the methods that existing approaches [22]
utilise is to enhance the IR scoring by navigating the call-graph
of the application and evaluating the relevance of the
neighboring methods. Finally, the results are displayed to the
developer in a list ranked by their relevance to the search.

B. Our Approach
As the current literature highlights [26], the IR approaches

may consider two strongly related terms via structural
information (i.e. OOP inheritance) to be irrelevant. In turn this

may cause one method to be at the top of the result list and the
other related one at the bottom. To cater for these structural
relations, the static call-graph (CG) is utilized. However, the
call-graphs usually contain many dependencies and very deep
nodes/edges that make them impractical for search and
navigation purposes [24].

To address these shortcomings, we propose a ranking
approach that utilises a novel scoring system based on lexical
similarity and application-only call-graph, where call-relations
to 3rd party libraries are excluded. Our approach groups the
relevant classes that are already found in a result list nearer to
each other so that those relevant for the search remain within
the top-N position of the list. This is achieved by applying a
simple scoring to the found classes based on where the search
terms appear, i.e. on the class name or in the class body. The
score is further improved by exploiting the call relations in the
application i.e. the number of calls coming in and going out of
the found class.

After creating a corpus from the application’s source code,
including the call-relations between classes and the class terms
(i.e. the terms extracted from the identifiers within a class),
our approach works as described in the following steps.

(1) Search for classes using the search terms extracted from

the CR’s description. For each class, we iterate over the
list of search terms and check if any of them match the
class name or class terms.

(2) Assign a score to the class based on where the search

terms occur: in the class name, in the list of class terms,
or the searched term is exactly the same as the class
name. The class and its score are added to a list, as the
pseudo code in Fig 1 illustrates.

Fig. 1. Procedure for class scoring by Lexical match.

(3) For each class in the ranked list, we adjust the score
based on the call-relations, by navigating the call-graph
to the immediate neighboring called or calling classes.
Only those classes that are already in the ranked list are
considered, to avoid introducing false positives in the

Function: relevantClassScoring()
Inputs: list of class name with terms; search terms
Output: ranked list of relevant classes

for each class with term list {
 score = 0.0;
 for each search term {

 if (search term == class name)
 score += 1.0000f;

 else if (search term occurs in the class name)
 score += 0.0250f;
 else if (search term exists in class term list)
 score += 0.0125f;
 }
 add class name and score to ranked result list
}
enhanceClassScoring(ranked result list);

context of a CR, where a subset of classes are usually
relevant. The score of an already ranked class is re-
calculated: if many other classes call it then it is a utility
function (decrease score), otherwise it has core
functionality (increase score), as Fig 2 illustrates.

Fig. 2. Procedure for improving the ranking results by call relations.

(4) Sort the list using the new score and discard the
absolute score value. We will use top-10 as the cut-off
point when measuring the performance of our approach,
to make it comparable with existing work. The top-10
list includes only the classes whose score caused them
to be placed between the 1st and 10th positions.

In cases where a lexical score cannot be assigned by

relevantClassScoring due to the query terms not matching the
terms extracted from the class name and identifiers, a
probabilistic score is obtained by repeating the search with the
IR model VSM. This score qualifies the class to be processed
by the enhanceClassScoring function where the call-relations
are evaluated as described in Step 3.

The rationale behind the scoring values is that class names
are treated as the most important elements and are assigned the
highest weight. So when a query term is identical to a class
name, it is considered a 100% match and an arbitrary score of
1.0000 is assigned to it. Otherwise, the occurrence of the query
term on the class name is considered to have higher importance
over the terms extracted from the identifiers or method
signatures. In those cases, arbitrary scores of 0.0250 and
0.0125 are assigned, respectively. Subsequently, to further
optimise the grouping of relevant classes nearer to each other
in the ranked result list, the call relations are evaluated. During
this stage the score of core functionality classes are boosted by
a factor of 0.0525 while those with utility function are reduced
by a factor of 2.5000. Finally, the derived score is used for
relative ranking and the absolute score value is dismissed.
There is no magic in choosing the values for these factors: our
algorithm was run using a small size dataset of manually
selected CRs from each application, and we made adjustments
to the scores to optimize the results for that training dataset.

III. CASE STUDY DESIGN
In order to evaluate the effectiveness of our approach, we

analysed the source code of six applications addressing five
independent domains: finance, integrated development
environment (IDE), aspect-oriented programming, graphical
user interface (GUI) and bar-code.

A. Subject applications

For the finance domain, we used two financial applications,
one open source (OSS), referred to as Pillar-One, and one
proprietary, due to confidentiality referred as Pillar-Two. Both
applications implement the financial regulations for credit and
risk management defined by the Basel-II1 Accord [4]. Pillar-
One2 is a client/server application developed in Java and
Groovy by Munich Re (a re-insurance company). The CR
documents are maintained with JIRA3, a public tracking tool.
Pillar-Two is a web-based application developed using the Java
programming language at our industrial partner’s site and is not
publicly available. It has been in production for 4 years. The
maintenance and further improvements are undertaken by five
developers, including in the past the first author, none of them
part of the initial team. The CR documents are maintained by a
proprietary tracking tool.

For the other four domains we used the same applications
investigated by the authors of [10] allowing us to compare our
tool with theirs: the IDE tool Eclipse4, the aspect-oriented
programming library AspectJ5, the GUI library SWT6 and the
bar-code tool ZXing7. Eclipse and AspectJ are well-known
large scale applications used in many empirical research
studies for evaluating various IR models [30]. SWT is a
subproject of Eclipse and ZXing is an Android project
maintained by Google8. Table I shows the size of the project
artefacts for all of the applications.

TABLE I. PROJECT ARTEFACTS SIZE

Application Source
files

CRs Call
relations

AspectJ 6485 286 3203
Eclipse (v3.1) 12863 3075 81177
Pillar-One (v1.6) 4355 26 7827
Pillar-Two (v7.0) 337 12 407
SWT (v3.1) 484 98 1268
ZXing 391 20 982

B. Data collection

We obtained the complete code and CR for all applications.
The CRs were already implemented for the versions of the
applications being analysed. In case of Pillar-Two, the affected
source code files (Java classes) are already listed in the CR
documents. In case of Pillar-One, the CR documents included

Function: enhanceClassScoring()
Inputs: list of ranked classes; call relations between classes
Output: improved list of ranked classes

for each ranked class r {

 if (r has a caller/callee call-relation)

 for each class c that call(c, r) or call(r, c) {

 if (c is in the ranked list)
 if (number of call-relations of c < 10)

// called/calling class has core functionality
score of c += 0.0525f;

 else
 // called/calling class has utility function

score of c -= 2.5000f;
 }
}

1. http://www.bis.org
2. http://www.pillarone.org
3. https://issuetracking.intuitive-collaboration.com
4. http://www.eclipse.org
5. http:// www.st.cs.uni-saarland.de/ibugs/
6. http://www.eclipse.org/swt/
7. http://code.google.com/p/zxing/
8. https://source.android.com/

to the source code repository commits reference numbers. By
manually analysing these references in the repository, we have
listed all the affected classes per CR in one document. In case
of the other four applications, i.e. Eclipse, AspectJ, SWT and
ZXing, we are grateful to Zhang et al. [10] for providing their
data sets, which included for each application the source code
and a document containing all CRs with affected classes.

C. Corpus preparation
The obtained project artefacts, i.e. the source code files and

the CRs, were processed using our source code analysis
framework tool called ConCodeSe (Contextual Code Search
Engine). We implemented the proposed scoring and ranking
approach (Section II) in ConCodeSe by extending our previous
work [2]. ConCodeSe utilises state of the art data extraction,
persistence and search APIs (SQL, Lucene9, Hibernate10, JIM
[5]). Figure 3 illustrates the extraction, storage, search and
analysis stages. In the top layer, the corpus creation and search
services tasks are executed automatically.

Fig. 3. ConCodeSe Data Extraction, Storage and Search.

The left hand side (1) represents the extraction and storage
of terms from the source code files and from the CRs. The
middle part (2) shows the extraction and storage of the call-
graph information from the application binary files. Finally, in
the search stage (3), the search for the classes affected by the
CRs takes place. The search results are saved in a spreadsheet
for additional statistical code analysis like the Spearman
correlation coefficients tests [6].

1a. Source code vocabulary processing.

In the first stage, the Java and Groovy sources are parsed
using the source code-mining tool JIM, which automates the
extraction and analysis of identifiers from source files. It parses
the source, extracts the identifiers and splits them into terms.
During this step, the identifiers and metadata from the source
code abstract syntax tree are extracted and added to a central
store, with information about their location. Also, the tool
INTT [10, 12] within JIM is used to tokenise and split the
identifier names into terms. INTT uses camel case, separators
and other heuristics to split ambiguous boundaries, digits and
lower cases. The extracted information, i.e. the identifier

names, their tokenisation and source code location, is stored in
a Derby11 relational database.

1b. Textual documentation vocabulary processing.
Also for the first stage, we developed a Java module using

the Lucene framework to tokenise the text in the CR
documents into terms. The module reuses Lucene’s Standard-
Analyzer class because it tokenises alphanumerics, acronyms,
company names, and email addresses, etc. using a JFlex-based
lexical grammar. It also includes stop-word removal. We used
a publicly available stop-words list12 to filter them out. The
extracted information is stored via the Hibernate persistence
API in the same Derby database.

2. Call-relations processing.

For the second stage, we developed a Java call-graph
construction module using the ASM13 tool. ASM is a simple
API for decomposing, modifying, and recomposing binary Java
classes. Our module reads the classes contained in the binary
file of the application and builds a list of called classes (callee)
and a list of calling classes (caller). Both the calleràcallee
and the calleeàcaller relations are stored in the same Derby
database for use in the search stage to improve the scoring of
the ranked classes in the result list. The constructed call-graph
is an application-only call-graph [24] where calls to external
libraries are ignored and only the call relations between the
classes within the application packages are considered.

3. CRs Search.
For the third stage of the process, we developed a search

module in ConCodeSe that runs SQL queries to search (1) for
the occurrences of the terms in the project artefacts and (2) for
all the relevant classes of a CR. The manually identified classes
affected by each CR are used to compute precision and recall
of the search results. Recall measures the completeness of the
results and precision measures the accuracy of the results.

IV. EVALUATION RESULTS
Our approach considers the immediate neighbouring

classes in the call graph and introduces a scoring technique to
determine the relevance of a class to the search query terms. In
[25] it is concluded that exploring 1 to 2 edges and top-5 to
top-10 gives the best results. Therefore to further compare the
effectiveness of our approach with the proposed method in
[10], we used top-N ranking. In the rest of the paper, we
consider a class to be located if it was ranked in the top-N for
some N, and we consider a CR to be located if at least one of
its affected classes was located.

RQ1: Does utilizing a combined approach based on lexical
information and call relations improve the search performance
with respect to a simple lexical string search?

Our first aim was to check whether simple string searching
with CR terms is sufficient to find the affected classes. The

9. http://lucene.apache.org/java/docs/index.html
10. http://www.hibernate.org
11. http://db.apache.org/derby
12. http://norm.al/2009/04/14/list-of-english-stop-words/

13. http://asm.ow2.org/

search resulted in very poor performance values: on average,
less than 20% of an application’s CRs were located, as shown
in the ‘lexical match’ column of Table IV. Since the source
code is consulted during maintenance, this lack of good
agreement between the code’s and the CRs’ vocabulary points
to potential inefficiencies during maintenance.

We analysed possible reasons for this and found that CR
descriptions of the open source developer oriented applications,
i.e. Eclipse and AspectJ, expose a lot of indications to the
program elements i.e. class names, which aids their traceability
to the source code. However, in case of the two business
oriented applications, i.e. Pillar-One and Pillar-Two, the CR
descriptions written by users or support desk team members are
very terse (see Table II). This leads to inefficiencies when
attempting to locate the relevant classes required to implement
a CR. Also, in certain cases, some of the class names and the
CR descriptions reflect the search terms explicitly, which helps
finding the affected classes more accurately, for example in
case of Pillar-Two CR #2074 a possible search term ‘lambda’
occurs in the class names and identifiers as shown in Table II.
However in Pillar-One CR #1619, neither the class names nor
the CR reflects a possible search term ‘poisson’ (see Table II).

TABLE II. SAMPLE TERM OCCURANCES IN ARTEFACTS

CR Description Affected Classes Identifier
2074
(P2)

Dialog to
distribute
lambda factors
similar to other
module

HelperDistributeLambda
RiskLambda
ProcessorCopyLambda
HelperCopyLambda

calculateLambdas,
readLambda,
hasLambdaDiversify
lambdaFactors

1619
(P1)

unrecoverable
error for error
parameter
poisson.

LognormalTypeIIPareto
TypeIIParetoDistribution

alphaAndLambda,
muAndLambda

In general, either the action-oriented nature of the CRs did

not provide clues to the search terms being addressed directly
or the class names of the applications did not reflect the search
terms explicitly. We attempt to address these issues using the
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example,
CR #2093 has 6 affected classes and the lexical search returned
61 classes, with the 6 ranked as shown in Table III. The table
also shows the improved ranking after using the call relations
(Fig. 2).

TABLE III. SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS
SCORING

Pillar-Two classes affected by
 CR # 2093

Lexical
ranking

Lexical + call
relations rank

QuotaShareContractStrategy.java 2 3

EventAalLimitStrategy.java 31 1

LimitStrategyType.groovy 33 2

EventLimitStrategy.java 4 4

NoneLimitStrategy.java 38 10

ILimitStrategy.java 5 5

Table IV shows the overall comparison of the lexical-only
vs the combined approach for N = 10. The percentage of CRs
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can
therefore answer RQ1 positively.

TABLE IV. NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES

Applications CRs Simple lexical
match

Lexical scoring +
call relations

AspectJ 286 32
(11%)

178
(62%)

Eclipse 3075 357
(12%)

1651
(54%)

Pillar-One 26 5
(19%)

15
(58%)

Pillar-Two 12 6
(50%)

11
(92%)

SWT 98 25
(26%)

82
(84%)

ZXing 20 0
(0%)

16
(80%)

Average 19% 72%

In certain cases, we observed that none of the search terms

extracted from the CR description are found in the source code
of a class. Consequently, in those cases the class at hand could
not be used as the entry point to navigating the call-graph to
re-rank its position in the result list. In such situations,
searching by VSM model as described in Section 2.B provided
the needed leverage. As illustrated in Table V, for CR #
103862 of SWT, 2 out of the 6 affected classes are ranked in
the top-10.

TABLE V. SAMPLE CR CLASSES WITHOUT CALL-RELATIONS

SWT CR# 103862
Subset of classes

ConCodeSe Ranking
Lexical With VSM

SWT.java Not found 10

Composite.java Not found 21

Display.java Not found 9

Overall, we learned that searching for classes affected by a
CR is different from searching for the classes implementing a
concept because the CRs tend to have more action-oriented
characteristics and their unit-of-work may cross multiple
concepts. Hence a CR may document what the users
experience on the User Interface, whereas, in the background
other program elements may be of relevance. In other words,
classes implementing different concepts may be relevant within
the context of a CR. Our approach addresses these challenges
by combining multiple sources of information, i.e. CR
vocabulary and call relations to provide an improved search
tool for the developers during maintenance tasks.

RQ2: How does the approach, implemented in our tool,
perform compared to a state-of-the-art tool?

To compare the search performance of ConCodeSe when
compared to an existing bug localisation tool, we have

performed the following tasks. First, we have conducted
searches with BugLocator [10] and obtained the same results as
reported on that study using their data set. Second, we have
conducted the same searches using the data set of [10] with our
tool. We als run both tools on our own data sets, Pillar-One and
Pillar-Two. Finally, we compared the results obtained from
both tools.

BugLocator implements an approach similar to ours. It is
initiated with a list of closed bug reports that reference the
effected files. First, it creates an indexed corpus of terms
extracted from the source code files. Secondly, it searches the
corpus for the relevant classes using the terms found in a CR.
The result produced is a ranked list of files based on textual
similarity between the queried terms from the CR and the terms
extracted from the source code files. The ranking is obtained by
combining two different VSM similarity calculations (i.e. how
source code file terms are matched with the terms found in the
bug reports). Those classes that are ranked within the top-1 or
top-10 are considered effectively localised. Based on this, to
compare the performance of BugLocator and our tool, we also
consider the classes ranked in top-1 and top-10 as effectively
localised if they match the ones listed in CR.

TABLE VI. THE LOCALISATION PERFORMANCE OF BOTH TOOLS

Applications CRs Top-1 Top-10
Bug

Locator
Con

CodeSe
Bug

Locator
Con

CodeSe
Aspectj 286 65

(23%)
67

(23%)
186

(65%)
159

(56%)
Eclipse 3075 749

(24%)
770

(25%)
1719

(56%)
1615

(53%)
Pillar-One 27 5

(19%)
7

(26%)
10

(37%)
14

(52%)
Pillar-Two 12 2

(17%)
6

(50%)
6

(50%)
10

(83%)
SWT 98 31

(32%)
54

(55%)
76

(78%)
81

(83%)
ZXing 20 8

(40%)
6

(30%)
14

(70%)
17

(85%)
Average 26% 35% 59% 69%

Table VI shows the number and percentage of CRs

localised by each tool for each N. On average our tool provides
a 10 percentual point improvement (35% over 26% and 69%
over 59% respectively) over BugLocator. For example, in case
of SWT ConCodeSe has put an affected class in the top
position for 55% (54/98) of the CRs, whereas BugLocator only
achieved it for 32% (31/98) of the CRs. The improvement in
performance over BugLocator was also noticeable in the top-10
ranking category, for example in case of ZXing 85% with
ConCodeSe compared to 70% with BugLocator. However, in
case of Eclipse and AspectJ ConCodeSe performs only slightly
better in the top-1 ranking category.

In addition, for both tools, we calculated the recall
performance, i.e. the number of classes that gets into the top-1
and top-10 positions per CR. After all, putting more relevant
classes in the top-N positions is bound to be more beneficial for
the developers. Table VII shows that on average for 19% and
30% of the CRs our tool has located more relevant classes in
the top-1 and top-10 positions respectively than BugLocator.
Also our tool performs just as well for 72% and 54% of the

CRs in top-N cases while performing worse in 9% and 16%
respectively. For example, for AspectJ, there were 39 CRs
where ConCodeSe ranked an affected class in the first position
and BugLocator didn’t, 23 CRs where BugLocator ranked an
affected class in the first position but ConCodeSe didn’t, and
for the remaining CRs, either both tools ranked an affected
class first or both didn’t.

TABLE VII. CONCODESE RECALL PERFORMANCE

 Applications Better Same Worse

 top-1 top-10 top-1 top-10 top-1 top-10

AspectJ

39
(14%)

84
(29%)

224
(78%)

161
(56%)

23
(8%)

41
(14%)

 Eclipse 325
(11%)

381
(12%)

2220
(72%)

1839
(60%)

529
(17%)

854
(28%)

 Pillar1 5
(19%)

10
(37%)

20
(74%)

14
(52%)

2
(7%)

3
(11%)

 Pillar2 4
(33%)

8
(67%)

8
(67%)

2
(17%)

0
(0%)

2
(17%)

 SWT 29
(30%)

21
(21%)

59
(60%)

60
(61%)

10
(10%)

17
(17%)

 ZXing 1
(5%)

3
(15%)

16
(80%)

15
(75%)

3
(15%)

2
(10%)

Average 19% 30% 72% 54% 9% 16%

In some cases BugLocator performs better than our tool
because it considers the comments of the source code. We also
tried to consider the comments and repeated the same search
tasks. As shown in Table VIII, on average the performance has
improved from 72% to 80% for top-1 and from 54% to 70%
for top-10 positions in locating just as many relevant classes as
BugLocator for the CRs. Consequently, the performance
advantage over BugLocator in the same top-1 and top-10
positions has dropped from 19% to 10% and from 30% to 19%
respectively while the poor performance values increased from
9% to 15% and from 16% to 25% respectively.

TABLE VIII. CONCODESE RECALL PERFORMANCE WITH COMMENTS

 Applications Better Same Worse

 top-1 top-10 top-1 top-10 top-1 top-10

AspectJ

24
(8%)

57
(20%)

231
(81%)

174
(64%)

31
(11%)

55
(19%)

 Eclipse 171
(6%)

221
(7%)

225
(72%)

1689
(55%)

678
(22%)

1164
(38%)

 Pillar1 3
(11%)

8
(30%)

20
(74%)

15
(56%)

4
(15%)

4
(15%)

 Pillar2 1
(8%)

4
(33%)

9
(75%)

8
(67%)

2
(17%)

0
(0%)

 SWT 21
(21%)

17
(17%)

63
(64%)

63
(64%)

14
(14%)

18
(18%)

 ZXing 1
(5%)

1
(5%)

16
(80%)

14
(70%)

3
(15%)

5
(25%)

Average 10% 19% 80% 70% 15% 25%

 Overall, we found that catering for the comments tends to
produce noise so the recall (i.e. number of affected classes
ranked in the top-N) deteriorates. For example, in case of the

SWT CR #84906, our approach fails to rank any classes
whereas BugLocator ranks one class in the top-10. When
comments are considered, ConCodeSe finds the same relevant
class as BugLocator, in position 30. Since this is not a
significant advantage, we decided to leave comments for
future work.

TABLE IX. AGGREGATE RECALL RESULTS FOR THE SIX
APPLICATIONS

Statistics
BugLocator ConCodeSe

Top-1 Top-10 Top-1 Top-10

Average 0.28 0.89 0.38 1.25
Median 0 0.8 0.3 1.2
Std. Dev 0.44 0.95 0.53 1.27

Furthermore, we used the non-parametric Wilcoxon
matched pairs test to statistically validate the outcome of our
study since the results follow a non-standard distribution.
Based on the values obtained (Z=-3.0594, W=0 and
p=0.00222), we conclude that on average ConCodeSe locates
significantly (p≤ 0.05) more relevant classes in the top-N
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in
Table IX.

Finally, we compared the Mean Average Precision (MAP)
values of both tools. MAP provides a single-figure measure of
quality across recall levels. Among evaluation measures, MAP
has been shown to have especially good discrimination and
stability [32]. MAP is calculated as the sum of all the average
precision values for each CR divided by the number of CRs for
a given application. Average precision is the precision value
obtained for each relevant class listed in the top-N set.
BugLocator utilises a similarity score that captures the
similarity of previously reported and implemented CRs to help
facilitate localisation of relevant classes for a new CR. Since
our tool does not consider similarity among CRs like
BugLocator does, to make a fair comparison we have taken the
MAP values reported in [10] for CRs without similarity
consideration.

TABLE X. MEAN AVERAGE PRECISION OF BOTH TOOLS

Applications CRs BugLocator
MAP

ConCodeSe
MAP

AspectJ 286 0.17 0.33

Eclipse 3075 0.26 0.30

Pillar-One 26 0.18 0.26

Pillar-Two 12 0.28 0.39

SWT 98 0.40 0.59

ZXing 20 0.41 0.43

As the results in Table X show, our tool achieved

significant gains particularly in case of AspectJ and Pillar-One

applications where the MAP values improved almost 90%
from 0.17 to 0.33 and from 0.18 to 0.26 respectively. In case
of Pillar-Two and SWT applications, our tool achieved 40%
improvement. However, in case of Eclipse and ZXing
applications the improvements in MAP values remained
minimal. Given that performance on individual queries is
expected to be highly variable [26], overall performance of
ConCodeSe remains superior.

V. DISCUSSION
Our study set out to explore whether supplementing lexical

searches with call relationship data would noticeably improve
the search accuracy revealed that it does as illustrated in Table
IV. Overall, as illustrated in Tables VI and VII, we observed
that enhancing the lexical scoring with call-relations leads to
superior search results over the probabilistic methods (i.e.
VSM). The added value of our proposed approach compared to
existing work [23] is that it combines simple lexical search and
call-graph navigation techniques, which improves upon the
weaknesses of current approaches that use probabilistic
methods like VSM or LSI where two classes may be
considered irrelevant although structurally related.

Our approach, implemented in our tool ConCodeSe,
improves on the result presented in [10] using the same data
set, indicating that utilising simple vocabulary match with call-
relations aids search performance as Table VI shows. We
observed that the direct nature of call-relations facilitates
search to focus on a specific CR and provides entry points to
the relevant classes within the context of the CR, which
supports the efforts of Petrenko et al. [26] on using program
dependencies when navigating the call graph during a search.
Another reason for the success of our approach is that utilising
the call-relations groups the relevant classes together within the
context of the search, which adds to the findings of Scanniello
et al [29] on clustering i.e. grouping of classes during static bug
localisation search.

It has been long argued that textual information in CR
documents is noisy [28]. In addition, we found that CRs reveal
two characteristics: (1) developer nature with technical details
i.e. references to code classes or (2) descriptive nature with
business terminology i.e. use of concept terms. This also
confirms the reasons why some classes are ranked in the top-10
whereas others aren’t as Table VII illustrates. In other words,
CR documents may be divided into two categories, those that
rely on implementation vocabulary (class names) and those that
use domain vocabulary; and the two vocabularies produce
different results. In both cases, the CRs tend to be of an action-
oriented nature, which does not provide clues to the domain
vocabulary being addressed directly or the class names do not
reflect domain terms explicitly [2]. Due to these characteristics,
the existing concept location techniques fall short in bug
localisation when a CR is not properly declaring a concept to
be searched or the class names do not reflect those related
concepts.

Although multiple classes may implement a concept [1], in
the data sets analysed on average only 3 classes listed as being
changed. This suggests that CRs are for a unit-of-work and
searching for the relevant classes using terms would find all the

classes implementing a concept. Hence in the context of a CR
this would lead to many false positives. Also in certain cases,
we have observed that the affected classes of a CR do not have
any call-relations. Consequently, in those cases navigating the
call-graph does not provide any information to re-rank relevant
classes at a higher position in the list. This provides further
evidence that one cannot rely on the code as the single source
of information.

Since CR documents may come from a group of people
who are unfamiliar with the vocabulary used in the code and in
the documentation, we propose that these documents contain a
section for describing the relevant domain vocabulary. For
example a list of domain terms implemented by an application
can be semi-automatically extracted and imported into the CR
management tool. Subsequently, when creating a CR, the user
may choose from the list of relevant domain terms or the tool
may intelligently suggest the terms for selection. Also, to deal
with crosscutting concerns as illustrated by Shepherd et al [13],
we recommend packaging the source code classes in
architectural layers based on conceptual responsibility instead
of technical functionality. This would first mediate improved
communication with business users, since such
communications take place at a conceptual level rather than
technical level, and second assist in finding relevant classes by
considering the architectural relations when no call-relations
exist.

In software projects, a developer may get assistance from
other team members or expert users when selecting the initial
entry points to perform the assigned maintenance tasks. Our
tool complements this by providing a contextual model i.e.
corpus with set of clues to aid program comprehension during
software maintenance. It allows developers to select the initial
entry points based on the ranking of the relevant classes. Thus
the CR vocabulary can be seen as the assistance provided by
the expert team members and the class names in the search
results can be seen as the initial entry points to investigate
additional relevant program elements.

A. Threats to Validity
The construct validity addresses whether the conclusions

can legitimately be made from the operationalisation of the
theories. During creation of the searchable corpus by extracting
the terms form source code identifiers, we relied on the JIM
tool and on the ASM framework for generating the call-
relations from the binary files. Although these tools were used
in previous studies [10, 12], it is possible that other tools may
produce different results. Also, we used arbitrary score values
to assign weight to the classes in order to rank them in the
result list. Although we took all precautions to avoid bias by
manually training the scoring algorithm using a small dataset,
we intend to use machine learning to train the algorithm in our
future work. Furthermore, we intend to consider the domain
concept relations and the method call-relations in addition to
class call-relations.

The internal validity addresses the relationship between the
cause and the effect of the results to verify that the observed
outcomes are the natural product of the implementation. We
catered for this by comparing like for like (i.e., using the same
datasets and the same criteria) the search performance of our

tool with an existing bug localisation tool [10]. Therefore, the
improvement in results can only be due to our approach. Also,
the queries in our study were taken directly from CR
descriptions. It is possible that these queries may inaccurately
reflect the queries developers use or that the use of different
queries with vocabularies more inline with the source code
would yield better results. However, using the CR descriptions
as queries instead of manually formulated queries avoided the
introduction of bias from the authors.

The conclusion validity refers to the relationship between
the treatment and the outcome and if it is statistically
significant. We used a non-parametric statistical test since no
assumptions were made about the distribution of the results.
This test is quite robust and has been extensively used in the
past to conduct similar analysis [38, 41]. The results showed
that the improvement in locating relevant classes for a CR in
the top-N position by our tool over the state of the art tool is
significant. Also we used a VSM model IR engine as a fall-
back option for lexical search. It is conceivable that an IR
engine using the LSI model may produce more or less sensitive
results. We plan to experiment with LSI in future work.

The external validity addresses the possibility of applying
the study and results to other circumstances. The characteristics
of the projects (the domain, the terse CRs, the naming
conventions, the kind of documentation available) are a threat
to external validity. We catered for this by repeating the search
experiments with different applications addressing multiple
domains for comparison. We intend to repeat the experiments
with other projects and artefacts in particular with more
industrial applications and with those developed in object-
oriented programming languages other than Java for
comparison.

Finally, with regards to the complexity of our approach and
the computation times, we observed that creating the corpus by
processing the application’s source code, CR descriptions, call
relations and searching for relevant classes for all CRs takes on
average 2 minutes per application on a single high end PC (i.e.
3GHz processor and 4GB RAM), except for the Eclipse
project. Due to its size (Table I), creation of the corpus takes 3
hours and ranking classes for all CRs takes about 1.5 hours,
which gives an average of almost 2 seconds per CR. We
consider this to be acceptable since our tool is a proof of
concept and in reality developers intend to search for one CR at
a time. We intend to improve the run-time performance by
using multi-threaded programming in our future work.

VI. RELATED WORK
Antoniol et al. [3] aimed to check whether source code

classes could be traced back to the functional requirements.
The terms from the source code were extracted by splitting the
identifier names, and the terms from the documentation were
extracted by normalising the text using transformation rules.
They created a matrix listing the classes to be retrieved by
querying the terms extracted from the text document. The
method relied on probabilistic and vector space information
retrieval and ranked the documents against a query. Applying
precision and recall validated their results. Although the
authors compare two different retrieval methods (VSM and
probabilistic), they conclude that semi-automatically

recovering traceability links between code and documentation
is achievable despite the fact that the developer has to analyse a
number of sources during a maintenance task to get high values
of recall. Our work differs in that it uses call graphs and is
geared towards maintenance, because we attempt to recover
traceability between CRs and source code classes.

On the use of call relations to recover traceability links, Hill
et al. [22] and P. Shao et al. [21] proposed similar approaches
to ours. In their approaches a query is created with search
terms, then the source code is searched for the matching
methods by using the probabilistic LSI method and a
term/document frequency (tf/idf) score is obtained.
Subsequently, for each method on the result list, the call-graph
of the application is utilized to evaluate the relevance of the
neighbouring methods. A score is assigned based on where the
query terms occur in the method names, in addition to the LSI
score. Finally, both scores are combined to rank the methods
into the final search result list. Our work differs in that we first
perform a simple lexical search for the affected classes instead
of the methods. Subsequently we improve the score by
evaluating the call-relations found on the static call graph based
on the number of edges coming in and going out of the
neighbouring classes. In [27] it is proposed that methods
calling many other methods can be seen as delegating and
methods called by others as performing functionality. Finally,
our approach ranks the results based on the combined score to
list relevant classes in the top-10 position of the result list, as
the current literature concludes that top-5 to top-10 gives the
best results [25].

In their study, Petrenko et al. [26] presented a technique
called DepIR that combines Dependency Search (DepS) with
Information Retrieval (IR). The technique uses an initial query
to obtain a ranked list of retrieved methods. The 10 methods
with the highest ranks are selected as the possible entry points
to explore the shortest path on the call-graph to the method
relevant for the query. The shortest path is calculated using
Dijkstra’s algorithm [31] and the effort needed is calculated as
the number of edges (call-relations) on the shortest path plus
the IR rank. The study aims to indicate a best-case scenario
estimate of the effort needed to locate the relevant method for
each CR. The DepIR performance is compared against pure IR
and DepS (a call-graph navigation technique) by using 5
systems and 10 CR. It is claimed that on average, DepIR
required a significantly smaller effort to locate the relevant
methods for each CR. The study only aims to evaluate the
theoretical effort reduction in finding the target method by
combining lexical ranking with dependency navigation.
Therefore it requires the target method to be known in advance,
in the same way we need to know the affected classes to
evaluate our search algorithm, which doesn’t require prior
knowledge of what classes need to be changed. Contrary to our
approach, DepIR doesn’t make use of the dependencies to
improve the ranking, and thus to further reduce the effort in
finding the right artefacts to change.

Zhou et al. [10] proposed a state-of-the-art traceability tool
called BugLocator that automatically searches for relevant
source code files based on relevant bug reports. Utilising
common bug localisation processes, the approach consists of
four steps: corpus creation, indexing, query construction,

retrieval & ranking. The method uses a revised Vector Space
Model (rVSM) to rank all source code files based on an initial
bug report. BugLocator has been evaluated with four open
source projects and the results show that on average 60% of
relevant classes reported as changed are ranked in top-10
position of the result list. For the open-source case studies,
BugLocator outperformed existing VSM approaches in feature
location tasks. However, the need to evaluate the tool's
effectiveness with industrial projects was acknowledged.
Since our work also involves industrial code, we performed
the same search tasks with BugLocator in place of our tool and
compared the results.

VII. CONCLUDING REMARKS
We presented a novel algorithm that, given a change

request (CR) and the application’s code, uses a combination of
lexical and structural information to suggest, in a ranked order,
classes that may have to be changed to implement the CR. The
approach doesn’t require test harnesses or dynamic analysis,
and it can handle bug reports, feature requests, and very terse
CRs.

We evaluated the algorithm with a range of applications,
and found that it is vastly superior to simple string search, as
performed by developers using an IDE. We compared the
search results to an existing approach, using the same CRs,
applications and evaluation criteria, and found that overall our
approach improved the ranking of the affected classes, thereby
increasing the percentage of CRs for which relevant classes are
retrieved and the number of relevant classes suggested among
the top-1 or top-10.

We found that including source code comments for the
lexical scoring may be helpful for particular CRs, but that
overall it decreases the search performance.

Our study shows that it is challenging to find the classes
referred by a CR: in spite of our improvements, over 40% of
CRs may not be localised (Table IV). In order to help better
understand and develop new search approaches, we will offer
in an online companion to this paper, the datasets of our case
study as a baseline for further bug localisation research.

ACKNOWLEDGMENTS
We thank our industrial partner, a financial service

provider located in southern Germany, for providing the
Pillar-Two artefacts and input on information required, and to
Simon Butler for his suggestions on an earlier draft of the
paper. We also thank Hongyu Zhang for kindly providing the
dataset used in their case study [10].

REFERENCES
[1] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept

assignment problem in program understanding,” in Proc. 15th Int’l
Conf. on Software Engineering, 1993, pp. 482-498.

[2] T. Dilshener and M. Wermelinger, “Relating developers’ concepts and
artefact vocabulary in a financial software module,” in 27th Int’l Conf.
on Software Maintenance, 2011, pp. 412-417.

[3] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, 28:970-983, 2002.

[4] Basel II: International Convergence of Capital Measurement and Capital
Standards: A Revised Framework - Comprehensive Version, June 2006,
http://www.bis.org/publ/bcbs128.htm.

[5] S. Butler, M. Wermelinger, Y. Yu, H. Sharp, “Exploring the influence of
identifier names on code quality: an empirical study,” in 14th European
Conf. on Software Maintenance and Reeng., 2010, pp. 159–168

[6] S. Boslaugh, P. Watters, “Statistics in a nutshell”, O’Reilly, 2008, pp.
176-179.

[7] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” in Proc. European Conf. on Object-
Oriented Programming, LNCS 6813, Springer-Verlag, 2011, pp. 130-
154

[8] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information Processing &; Management, vol. 24, no. 5,
pp. 513-523, 1988.

[9] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
a roadmap,” in Proc. of the Conf. on The Future of Software
Engineering, 2000, pp. 73-87.

[10] J. Zhou, H. Zhang, and D. Lo. 2012. Where Should the Bugs be Fixed?
in Proc. 34th Int’l Conf. on Software Engineering, 2012, pp. 14-24.

[11] M. Feilkas, D. Ratiu, and E. Jurgens, “The loss of architectural
knowledge during system evolution: An industrial case study,” in 17th
Int’l Conf. on Program Comp, 2009, pp. 188-197.

[12] J. Starke, C. Luce, and J. Sillito, “Searching and skimming: An
exploratory study,” in 25th Int’l Conf. on Software Maintenance, 2009,
pp. 157 –166.

[13] D. Shepherd, L. Pollock, and T. Tourwé, “Using language clues to
discover crosscutting concerns,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1-6, 2005.

[14] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proc. 25th Int'l
Conf. on Software Engineering, 2003, pp. 125-135.

[15] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery,” in 27th Int’l Conf. on Software Maintenance,
2011, pp. 133-142.

[16] N. Wilde and M. C. Scully, “Software reconnaissance: Mapping
program features to code,” Journal of Software Maintenance: Research
and Practice, vol. 7, no. 1, pp. 49-62, 1995.

[17] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V.
Rajlich, “Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE Trans.
on Software Engineering, vol. 33, no. 6, pp. 420-432, 2007.

[18] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc,
“CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis,” Proc.16thInt’l
Conf.on Program Comprehension, 2008, pp. 53–62.

[19] F. Asadi, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, “A Heuristic-
Based Approach to Identify Concepts in Execution Traces,” in 14th
European Conf. on Software Maintenance and Reengineering, 2010, pp.
31–40.

[20] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, “Static
techniques for concept location in object-oriented code,” in Proc. 13th
Int'l Workshop on Program Comprehension, 2005, pp. 33-42.

[21] P. Shao and R. K. Smith, “Feature location by IR modules and call
graph,” in Proc. of the 47th Annual Southeast Regional Conference,
2009, pp. 70:1–70:4.

[22] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the
Neighborhood with Dora to Expedite Software Maintenance", in Proc.
22nd Int'l Conf. on Automated Software Engineering, 2007, pp. 14-23.

[23] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc,
“CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis,” in 16th Int'l Conf.
on Program Comprehension, 2008, pp. 53–62.

[24] K. Ali and O. Lhoták, “Application-only call graph construction,”
European Conf. on Object-Oriented Programming, 2012, pp. 688–712.

[25] E. Hill, L. Pollock, and K. Vijay-Shanker, “Investigating how to
effectively combine static concern location techniques,” in Proc. of the
3rd Int'l Workshop on Search-driven development: users, infrastructure,
tools, and evaluation - SUITE ’11, 2011, pp. 37–40.

[26] M. Petrenko and V. Rajlich, “Concept location using program
dependencies and information retrieval (DepIR),” Information and
Software Technology, vol. 55, no. 4, pp. 651–659, 2013.

[27] M. Revelle, B. Dit, and D. Poshyvanyk, “Using Data Fusion and Web
Mining to Support Feature Location in Software,” in 18th Int'l Conf. on
Program Comprehension, 2010, pp. 14–23.

[28] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C.
Weiss, “What makes a good bug report?,” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618 –643, sept.-oct. 2010.

[29] G. Scanniello and A. Marcus, “Clustering Support for Static Concept
Location in Source Code,” 19th Int'l Conf. on Program Comprehension,
2011, pp. 1–10.

[30] S. Rao and A. Kak. Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models.
In Proc. 8th Wworking Cconf. on Mining Software Rrepositories, 2011,
p.43-52.

[31] E.W. Dijkstra, A note on two problems in connexion with graphs,
Numerische Mathematik 1 (1959) 269–271.

[32] C. Manning, P. Raghavan, and H. Schutze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

