Improving Bug Localisation Using
Lexical Information and Call Relations

by Tezcan Dilshener

call relations to

Research Aim

|dentify opportunities of using CR vocabulary and application

address challenges faced by current combined approaches.
reduce the program comprehension overhead.

RQ1: Does utilizing a combined approach based on lexical
information and call relations improve the search performance with
respect to a simple string search?

RQ2: How does the combined approach, implemented in our tool
perform compared to another state-of-the-art tool?

Our Approach

Integrate lexical information retrieval with structural
program dependency search.

Present a ranked list of relevant classes for a change

request (located in the top-N positions).
Search for classes using the terms extracted from CR’s.
Assign a score to class based on where search terms occur.
For each class, adjust score based on the call-relations to neighbours.
Sort result list using new score to group relevant classes together.

)

ConCodeSe

Contextual Model

Ranked Result List of Relevant Classes

Relevant
Program Elements

)

Pillar-Two classes affected by | Lexical Lexical + call
CR #2093 ranking relations rank
QuotaShareContractStrategy.java 2 3
EventAalLimitStrategy.java 3] 1
LimitStrategyType.groovy 33 2
EventLimitStrategy.java 4 4
NoneLimitStrategy.java 38 10

[LimitStrategy.java

J

©Copy right by tezcan@dilshener.de

< Bug Report

<bug 1d="2093" opendate="2010-03-30 04:03:07" fixdate="2010-04-01">

<buginformation>
<summary>

Make Quota

</summary>
<description>

By adding this feature we should allow the selection of specific events the

event

limit 1s applied to.

</description>
</buginformation>
</bug>

limit selectable

f

The Open

Evaluation of Results

e RQ1: Lexical search locates less than 20% of CRs where as our
approach locates more than 70%.

Simple lexical
match

Lexical scoring +
call relations

Average

19%

72%

RQ2: ConCodeSe locates more CRs per application and more
relevant classes in the top-N than BuglLocator.

Compared to an existing approach,
improved ranking of affected classes.
increased percentage of CRs for which relevant classes are retrieved.
enhanced number of relevant classes suggested among the top-1 or -10.

Top-1 Top-10
Bug Con Bug Con
L.ocator CodeSe L.ocator CodeSe
Average 26% 35% 59% 69%
Better Same Worse
top-1 top-10 top-1 top-10 top-1 | top-10
Average 19% 30% 72% 54% 9% | 16%

An algorithm using lexical and structural information
suggests, in a ranked order, classes to be changed.

Vastly superior to simple string search, as performed by
developers using an IDE.

Challenging to find the classes referred by a CR:
In spite our improvements, over 40% of CRs may not be localised
further enhance algorithm by considering domain concept relations.

University



