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<bug id="2093" opendate="2010-03-30 04:03:07" fixdate="2010-04-01"> 
    <buginformation> 
       <summary> 

Make Quota event limit selectable 
</summary> 

       <description> 
By adding this feature we should allow the selection of specific events the 
limit is applied to. 

</description> 
    </buginformation> 
  </bug> 
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search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

Applications CRs Simple lexical 
match 

Lexical scoring + 
call relations  

AspectJ 286 32 
(11%) 

178 
(62%) 

Eclipse 3075 357 
(12%) 

1651 
(54%) 

Pillar-One 26 5 
(19%) 

15 
(58%) 

Pillar-Two 12 6 
(50%) 

11 
(92%) 

SWT 98 25 
(26%) 

82 
(84%) 

ZXing 20 0 
(0%) 

16 
(80%) 

Average  19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 

Research Aim 
•  Identify opportunities of using CR vocabulary and application 

call relations to  
•  address challenges faced by current combined approaches. 
•  reduce the program comprehension overhead.  

 

•  RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance with 
respect to a simple string search? 

•  RQ2: How does the combined approach, implemented in our tool 
perform compared to another state-of-the-art tool? 

Our Approach  
•  Integrate lexical information retrieval with structural 

program dependency search. 

• Present a ranked list of relevant classes for a change 
request (located in the top-N positions).  
1.  Search for classes using the terms extracted from CR’s. 
2.  Assign a score to class based on where search terms occur. 
3.  For each class, adjust score based on the call-relations to neighbours.  
4.  Sort result list using new score to group relevant classes together. 
 

 
Contributions 
• An algorithm using lexical and structural information 

suggests, in a ranked order, classes to be changed.  

• Vastly superior to simple string search, as performed by 
developers using an IDE.  

• Compared to an existing approach,  
•  improved ranking of affected classes.  
•  increased percentage of CRs for which relevant classes are retrieved. 
•  enhanced number of relevant classes suggested among the top-1 or -10. 

• Challenging to find the classes referred by a CR:  
•  in spite our improvements, over 40% of CRs may not be localised 
•  further enhance algorithm by considering domain concept relations.  

	
  ©Copy	
  right	
  by	
  tezcan@dilshener.de	
  

Relevant 
 

Evaluation of Results 
•  RQ1: Lexical search locates less than 20% of CRs where as our 

approach locates more than 70%. 

 

•  RQ2: ConCodeSe locates more CRs per application and more 
relevant classes in the top-N than BugLocator. 
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not be used as the entry point to navigating the call-graph to 
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RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 
performed the following tasks. First, we have conducted 
searches with BugLocator [10] and obtained the same results as 
reported on that study using their data set. Second, we have 
conducted the same searches using the data set of [10] with our 
tool. We als run both tools on our own data sets, Pillar-One and 
Pillar-Two. Finally, we compared the results obtained from 
both tools. 

BugLocator implements an approach similar to ours. It is 
initiated with a list of closed bug reports that reference the 
effected files. First, it creates an indexed corpus of terms 

Evaluation of Results (cont.) 

•  RQ2: Performance of our tool compared to another tool. 
•  ConCodeSe provides a 10 percentual point improvement over BugLocator.  

•  ConCodeSe locates more relevant classes in the top-N positions than 
BugLocator. 

•  Achieved significant gains (i.e. AspectJ and Pillar-One applications)  
•  MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26. 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

  
  

Better Same Worse 
top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
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