
Improving	
 Bug	
 Localisa2on	
 Using	
 	

Lexical	
 Informa2on	
 and	
 Call	
 Rela2ons	

by	
 Tezcan	
 Dilshener	

 Bug Report

<bug id="2093" opendate="2010-03-30 04:03:07" fixdate="2010-04-01">
 <buginformation>
 <summary>

Make Quota event limit selectable
</summary>

 <description>
By adding this feature we should allow the selection of specific events the
limit is applied to.

</description>
 </buginformation>
 </bug>

Search “Algo” Rhythm

Lexical(Similarity(

(
!

Event = Event

Class%Call%Relations%

!

!

ConCodeSe
Contextual Model

Program Elements

Example of Scoring

Ranked Result List of Relevant Classes

search resulted in very poor performance values: on average,
less than 20% of an application’s CRs were located, as shown
in the ‘lexical match’ column of Table IV. Since the source
code is consulted during maintenance, this lack of good
agreement between the code’s and the CRs’ vocabulary points
to potential inefficiencies during maintenance.

We analysed possible reasons for this and found that CR
descriptions of the open source developer oriented applications,
i.e. Eclipse and AspectJ, expose a lot of indications to the
program elements i.e. class names, which aids their traceability
to the source code. However, in case of the two business
oriented applications, i.e. Pillar-One and Pillar-Two, the CR
descriptions written by users or support desk team members are
very terse (see Table II). This leads to inefficiencies when
attempting to locate the relevant classes required to implement
a CR. Also, in certain cases, some of the class names and the
CR descriptions reflect the search terms explicitly, which helps
finding the affected classes more accurately, for example in
case of Pillar-Two CR #2074 a possible search term ‘lambda’
occurs in the class names and identifiers as shown in Table II.
However in Pillar-One CR #1619, neither the class names nor
the CR reflects a possible search term ‘poisson’ (see Table II).

TABLE II. SAMPLE TERM OCCURANCES IN ARTEFACTS

CR Description Affected Classes Identifier
2074
(P2)

Dialog to
distribute
lambda factors
similar to other
module

HelperDistributeLambda
RiskLambda
ProcessorCopyLambda
HelperCopyLambda

calculateLambdas,
readLambda,
hasLambdaDiversify
lambdaFactors

1619
(P1)

unrecoverable
error for error
parameter
poisson.

LognormalTypeIIPareto
TypeIIParetoDistribution

alphaAndLambda,
muAndLambda

In general, either the action-oriented nature of the CRs did

not provide clues to the search terms being addressed directly
or the class names of the applications did not reflect the search
terms explicitly. We attempt to address these issues using the
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example,
CR #2093 has 6 affected classes and the lexical search returned
61 classes, with the 6 ranked as shown in Table III. The table
also shows the improved ranking after using the call relations
(Fig. 2).

TABLE III. SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS
SCORING

Pillar-Two classes affected by
 CR # 2093

Lexical
ranking

Lexical + call
relations rank

QuotaShareContractStrategy.java 2 3

EventAalLimitStrategy.java 31 1

LimitStrategyType.groovy 33 2

EventLimitStrategy.java 4 4

NoneLimitStrategy.java 38 10

ILimitStrategy.java 5 5

Table IV shows the overall comparison of the lexical-only
vs the combined approach for N = 10. The percentage of CRs
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can
therefore answer RQ1 positively.

TABLE IV. NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES

Applications CRs Simple lexical
match

Lexical scoring +
call relations

AspectJ 286 32
(11%)

178
(62%)

Eclipse 3075 357
(12%)

1651
(54%)

Pillar-One 26 5
(19%)

15
(58%)

Pillar-Two 12 6
(50%)

11
(92%)

SWT 98 25
(26%)

82
(84%)

ZXing 20 0
(0%)

16
(80%)

Average 19% 72%

In certain cases, we observed that none of the search terms

extracted from the CR description are found in the source code
of a class. Consequently, in those cases the class at hand could
not be used as the entry point to navigating the call-graph to
re-rank its position in the result list. In such situations,
searching by VSM model as described in Section 2.B provided
the needed leverage. As illustrated in Table V, for CR #
103862 of SWT, 2 out of the 6 affected classes are ranked in
the top-10.

TABLE V. SAMPLE CR CLASSES WITHOUT CALL-RELATIONS

SWT CR# 103862
Subset of classes

ConCodeSe Ranking

Lexical With VSM

SWT.java Not found 10

Composite.java Not found 21

Display.java Not found 9

Overall, we learned that searching for classes affected by a
CR is different from searching for the classes implementing a
concept because the CRs tend to have more action-oriented
characteristics and their unit-of-work may cross multiple
concepts. Hence a CR may document what the users
experience on the User Interface, whereas, in the background
other program elements may be of relevance. In other words,
classes implementing different concepts may be relevant within
the context of a CR. Our approach addresses these challenges
by combining multiple sources of information, i.e. CR
vocabulary and call relations to provide an improved search
tool for the developers during maintenance tasks.

RQ2: How does the approach, implemented in our tool,
perform compared to a state-of-the-art tool?

To compare the search performance of ConCodeSe when
compared to an existing bug localisation tool, we have

Research Aim
•  Identify opportunities of using CR vocabulary and application

call relations to
•  address challenges faced by current combined approaches.
•  reduce the program comprehension overhead.

•  RQ1: Does utilizing a combined approach based on lexical
information and call relations improve the search performance with
respect to a simple string search?

•  RQ2: How does the combined approach, implemented in our tool
perform compared to another state-of-the-art tool?

Our Approach
•  Integrate lexical information retrieval with structural

program dependency search.

• Present a ranked list of relevant classes for a change
request (located in the top-N positions).
1.  Search for classes using the terms extracted from CR’s.
2.  Assign a score to class based on where search terms occur.
3.  For each class, adjust score based on the call-relations to neighbours.
4.  Sort result list using new score to group relevant classes together.

Contributions
• An algorithm using lexical and structural information

suggests, in a ranked order, classes to be changed.

• Vastly superior to simple string search, as performed by
developers using an IDE.

• Compared to an existing approach,
•  improved ranking of affected classes.
•  increased percentage of CRs for which relevant classes are retrieved.
•  enhanced number of relevant classes suggested among the top-1 or -10.

• Challenging to find the classes referred by a CR:
•  in spite our improvements, over 40% of CRs may not be localised
•  further enhance algorithm by considering domain concept relations.

	
 ©Copy	
 right	
 by	
 tezcan@dilshener.de	

Relevant

Evaluation of Results
•  RQ1: Lexical search locates less than 20% of CRs where as our

approach locates more than 70%.

•  RQ2: ConCodeSe locates more CRs per application and more
relevant classes in the top-N than BugLocator.

search resulted in very poor performance values: on average,
less than 20% of an application’s CRs were located, as shown
in the ‘lexical match’ column of Table IV. Since the source
code is consulted during maintenance, this lack of good
agreement between the code’s and the CRs’ vocabulary points
to potential inefficiencies during maintenance.

We analysed possible reasons for this and found that CR
descriptions of the open source developer oriented applications,
i.e. Eclipse and AspectJ, expose a lot of indications to the
program elements i.e. class names, which aids their traceability
to the source code. However, in case of the two business
oriented applications, i.e. Pillar-One and Pillar-Two, the CR
descriptions written by users or support desk team members are
very terse (see Table II). This leads to inefficiencies when
attempting to locate the relevant classes required to implement
a CR. Also, in certain cases, some of the class names and the
CR descriptions reflect the search terms explicitly, which helps
finding the affected classes more accurately, for example in
case of Pillar-Two CR #2074 a possible search term ‘lambda’
occurs in the class names and identifiers as shown in Table II.
However in Pillar-One CR #1619, neither the class names nor
the CR reflects a possible search term ‘poisson’ (see Table II).

TABLE II. SAMPLE TERM OCCURANCES IN ARTEFACTS

CR Description Affected Classes Identifier
2074
(P2)

Dialog to
distribute
lambda factors
similar to other
module

HelperDistributeLambda
RiskLambda
ProcessorCopyLambda
HelperCopyLambda

calculateLambdas,
readLambda,
hasLambdaDiversify
lambdaFactors

1619
(P1)

unrecoverable
error for error
parameter
poisson.

LognormalTypeIIPareto
TypeIIParetoDistribution

alphaAndLambda,
muAndLambda

In general, either the action-oriented nature of the CRs did

not provide clues to the search terms being addressed directly
or the class names of the applications did not reflect the search
terms explicitly. We attempt to address these issues using the
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example,
CR #2093 has 6 affected classes and the lexical search returned
61 classes, with the 6 ranked as shown in Table III. The table
also shows the improved ranking after using the call relations
(Fig. 2).

TABLE III. SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS
SCORING

Pillar-Two classes affected by
 CR # 2093

Lexical
ranking

Lexical + call
relations rank

QuotaShareContractStrategy.java 2 3

EventAalLimitStrategy.java 31 1

LimitStrategyType.groovy 33 2

EventLimitStrategy.java 4 4

NoneLimitStrategy.java 38 10

ILimitStrategy.java 5 5

Table IV shows the overall comparison of the lexical-only
vs the combined approach for N = 10. The percentage of CRs
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can
therefore answer RQ1 positively.

TABLE IV. NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES

 Simple lexical
match

Lexical scoring +
call relations

Average 19% 72%

In certain cases, we observed that none of the search terms

extracted from the CR description are found in the source code
of a class. Consequently, in those cases the class at hand could
not be used as the entry point to navigating the call-graph to
re-rank its position in the result list. In such situations,
searching by VSM model as described in Section 2.B provided
the needed leverage. As illustrated in Table V, for CR #
103862 of SWT, 2 out of the 6 affected classes are ranked in
the top-10.

TABLE V. SAMPLE CR CLASSES WITHOUT CALL-RELATIONS

SWT CR# 103862
Subset of classes

ConCodeSe Ranking

Lexical With VSM

SWT.java Not found 10

Composite.java Not found 21

Display.java Not found 9

Overall, we learned that searching for classes affected by a
CR is different from searching for the classes implementing a
concept because the CRs tend to have more action-oriented
characteristics and their unit-of-work may cross multiple
concepts. Hence a CR may document what the users
experience on the User Interface, whereas, in the background
other program elements may be of relevance. In other words,
classes implementing different concepts may be relevant within
the context of a CR. Our approach addresses these challenges
by combining multiple sources of information, i.e. CR
vocabulary and call relations to provide an improved search
tool for the developers during maintenance tasks.

RQ2: How does the approach, implemented in our tool,
perform compared to a state-of-the-art tool?

To compare the search performance of ConCodeSe when
compared to an existing bug localisation tool, we have
performed the following tasks. First, we have conducted
searches with BugLocator [10] and obtained the same results as
reported on that study using their data set. Second, we have
conducted the same searches using the data set of [10] with our
tool. We als run both tools on our own data sets, Pillar-One and
Pillar-Two. Finally, we compared the results obtained from
both tools.

BugLocator implements an approach similar to ours. It is
initiated with a list of closed bug reports that reference the
effected files. First, it creates an indexed corpus of terms

Evaluation of Results (cont.)

•  RQ2: Performance of our tool compared to another tool.
•  ConCodeSe provides a 10 percentual point improvement over BugLocator.

•  ConCodeSe locates more relevant classes in the top-N positions than
BugLocator.

•  Achieved significant gains (i.e. AspectJ and Pillar-One applications)
•  MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26.

extracted from the source code files. Secondly, it searches the
corpus for the relevant classes using the terms found in a CR.
The result produced is a ranked list of files based on textual
similarity between the queried terms from the CR and the terms
extracted from the source code files. The ranking is obtained by
combining two different VSM similarity calculations (i.e. how
source code file terms are matched with the terms found in the
bug reports). Those classes that are ranked within the top-1 or
top-10 are considered effectively localised. Based on this, to
compare the performance of BugLocator and our tool, we also
consider the classes ranked in top-1 and top-10 as effectively
localised if they match the ones listed in CR.

TABLE VI. THE LOCALISATION PERFORMANCE OF BOTH TOOLS

 Top-1 Top-10
Bug

Locator
Con

CodeSe
Bug

Locator
Con

CodeSe
Average 26% 35% 59% 69%

Table VI shows the number and percentage of CRs

localised by each tool for each N. On average our tool provides
a 10 percentual point improvement (35% over 26% and 69%
over 59% respectively) over BugLocator. For example, in case
of SWT ConCodeSe has put an affected class in the top
position for 55% (54/98) of the CRs, whereas BugLocator only
achieved it for 32% (31/98) of the CRs. The improvement in
performance over BugLocator was also noticeable in the top-10
ranking category, for example in case of ZXing 85% with
ConCodeSe compared to 70% with BugLocator. However, in
case of Eclipse and AspectJ ConCodeSe performs only slightly
better in the top-1 ranking category.

In addition, for both tools, we calculated the recall
performance, i.e. the number of classes that gets into the top-1
and top-10 positions per CR. After all, putting more relevant
classes in the top-N positions is bound to be more beneficial for
the developers. Table VII shows that on average for 19% and
30% of the CRs our tool has located more relevant classes in
the top-1 and top-10 positions respectively than BugLocator.
Also our tool performs just as well for 72% and 54% of the
CRs in top-N cases while performing worse in 9% and 16%
respectively. For example, for AspectJ, there were 39 CRs
where ConCodeSe ranked an affected class in the first position
and BugLocator didn’t, 23 CRs where BugLocator ranked an
affected class in the first position but ConCodeSe didn’t, and
for the remaining CRs, either both tools ranked an affected
class first or both didn’t.

TABLE VII. CONCODESE RECALL PERFORMANCE

 Applications Better Same Worse

 top-1 top-10 top-1 top-10 top-1 top-10

Average 19% 30% 72% 54% 9% 16%

In some cases BugLocator performs better than our tool
because it considers the comments of the source code. We also
tried to consider the comments and repeated the same search
tasks. As shown in Table VIII, on average the performance has
improved from 72% to 80% for top-1 and from 54% to 70%

for top-10 positions in locating just as many relevant classes as
BugLocator for the CRs. Consequently, the performance
advantage over BugLocator in the same top-1 and top-10
positions has dropped from 19% to 10% and from 30% to 19%
respectively while the poor performance values increased from
9% to 15% and from 16% to 25% respectively.

TABLE VIII. CONCODESE RECALL PERFORMANCE WITH COMMENTS

 Better Same Worse

 top-1 top-10 top-1 top-10 top-1 top-10

Average 10% 19% 80% 70% 15% 25%

 Overall, we found that catering for the comments tends to
produce noise so the recall (i.e. number of affected classes
ranked in the top-N) deteriorates. For example, in case of the
SWT CR #84906, our approach fails to rank any classes
whereas BugLocator ranks one class in the top-10. When
comments are considered, ConCodeSe finds the same relevant
class as BugLocator, in position 30. Since this is not a
significant advantage, we decided to leave comments for
future work.

TABLE IX. AGGREGATE RECALL RESULTS FOR THE SIX
APPLICATIONS

Statistics
BugLocator ConCodeSe

Top-1 Top-10 Top-1 Top-10

Average 0.28 0.89 0.38 1.25
Median 0 0.8 0.3 1.2
Std. Dev 0.44 0.95 0.53 1.27

Furthermore, we used the non-parametric Wilcoxon
matched pairs test to statistically validate the outcome of our
study since the results follow a non-standard distribution.
Based on the values obtained (Z=-3.0594, W=0 and
p=0.00222), we conclude that on average ConCodeSe locates
significantly (p≤ 0.05) more relevant classes in the top-N
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in
Table IX.

Finally, we compared the Mean Average Precision (MAP)
values of both tools. MAP provides a single-figure measure of
quality across recall levels. Among evaluation measures, MAP
has been shown to have especially good discrimination and
stability [32]. MAP is calculated as the sum of all the average
precision values for each CR divided by the number of CRs for
a given application. Average precision is the precision value
obtained for each relevant class listed in the top-N set.
BugLocator utilises a similarity score that captures the
similarity of previously reported and implemented CRs to help
facilitate localisation of relevant classes for a new CR. Since
our tool does not consider similarity among CRs like
BugLocator does, to make a fair comparison we have taken the
MAP values reported in [10] for CRs without similarity
consideration.

TABLE X. MEAN AVERAGE PRECISION OF BOTH TOOLS

Better Same Worse
top-1 top-10 top-1 top-10 top-1 top-10

Average 19% 30% 72% 54% 9% 16%

extracted from the source code files. Secondly, it searches the
corpus for the relevant classes using the terms found in a CR.
The result produced is a ranked list of files based on textual
similarity between the queried terms from the CR and the terms
extracted from the source code files. The ranking is obtained by
combining two different VSM similarity calculations (i.e. how
source code file terms are matched with the terms found in the
bug reports). Those classes that are ranked within the top-1 or
top-10 are considered effectively localised. Based on this, to
compare the performance of BugLocator and our tool, we also
consider the classes ranked in top-1 and top-10 as effectively
localised if they match the ones listed in CR.

TABLE VI. THE LOCALISATION PERFORMANCE OF BOTH TOOLS

 Top-1 Top-10
Bug

Locator
Con

CodeSe
Bug

Locator
Con

CodeSe
Average 26% 35% 59% 69%

Table VI shows the number and percentage of CRs

localised by each tool for each N. On average our tool provides
a 10 percentual point improvement (35% over 26% and 69%
over 59% respectively) over BugLocator. For example, in case
of SWT ConCodeSe has put an affected class in the top
position for 55% (54/98) of the CRs, whereas BugLocator only
achieved it for 32% (31/98) of the CRs. The improvement in
performance over BugLocator was also noticeable in the top-10
ranking category, for example in case of ZXing 85% with
ConCodeSe compared to 70% with BugLocator. However, in
case of Eclipse and AspectJ ConCodeSe performs only slightly
better in the top-1 ranking category.

In addition, for both tools, we calculated the recall
performance, i.e. the number of classes that gets into the top-1
and top-10 positions per CR. After all, putting more relevant
classes in the top-N positions is bound to be more beneficial for
the developers. Table VII shows that on average for 19% and
30% of the CRs our tool has located more relevant classes in
the top-1 and top-10 positions respectively than BugLocator.
Also our tool performs just as well for 72% and 54% of the
CRs in top-N cases while performing worse in 9% and 16%
respectively. For example, for AspectJ, there were 39 CRs
where ConCodeSe ranked an affected class in the first position
and BugLocator didn’t, 23 CRs where BugLocator ranked an
affected class in the first position but ConCodeSe didn’t, and
for the remaining CRs, either both tools ranked an affected
class first or both didn’t.

TABLE VII. CONCODESE RECALL PERFORMANCE

 Applications Better Same Worse

 top-1 top-10 top-1 top-10 top-1 top-10

Average 19% 30% 72% 54% 9% 16%

In some cases BugLocator performs better than our tool
because it considers the comments of the source code. We also
tried to consider the comments and repeated the same search
tasks. As shown in Table VIII, on average the performance has
improved from 72% to 80% for top-1 and from 54% to 70%

for top-10 positions in locating just as many relevant classes as
BugLocator for the CRs. Consequently, the performance
advantage over BugLocator in the same top-1 and top-10
positions has dropped from 19% to 10% and from 30% to 19%
respectively while the poor performance values increased from
9% to 15% and from 16% to 25% respectively.

TABLE VIII. CONCODESE RECALL PERFORMANCE WITH COMMENTS

 Better Same Worse

 top-1 top-10 top-1 top-10 top-1 top-10

Average 10% 19% 80% 70% 15% 25%

 Overall, we found that catering for the comments tends to
produce noise so the recall (i.e. number of affected classes
ranked in the top-N) deteriorates. For example, in case of the
SWT CR #84906, our approach fails to rank any classes
whereas BugLocator ranks one class in the top-10. When
comments are considered, ConCodeSe finds the same relevant
class as BugLocator, in position 30. Since this is not a
significant advantage, we decided to leave comments for
future work.

TABLE IX. AGGREGATE RECALL RESULTS FOR THE SIX
APPLICATIONS

Statistics
BugLocator ConCodeSe

Top-1 Top-10 Top-1 Top-10

Average 0.28 0.89 0.38 1.25
Median 0 0.8 0.3 1.2
Std. Dev 0.44 0.95 0.53 1.27

Furthermore, we used the non-parametric Wilcoxon
matched pairs test to statistically validate the outcome of our
study since the results follow a non-standard distribution.
Based on the values obtained (Z=-3.0594, W=0 and
p=0.00222), we conclude that on average ConCodeSe locates
significantly (p≤ 0.05) more relevant classes in the top-N
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in
Table IX.

Finally, we compared the Mean Average Precision (MAP)
values of both tools. MAP provides a single-figure measure of
quality across recall levels. Among evaluation measures, MAP
has been shown to have especially good discrimination and
stability [32]. MAP is calculated as the sum of all the average
precision values for each CR divided by the number of CRs for
a given application. Average precision is the precision value
obtained for each relevant class listed in the top-N set.
BugLocator utilises a similarity score that captures the
similarity of previously reported and implemented CRs to help
facilitate localisation of relevant classes for a new CR. Since
our tool does not consider similarity among CRs like
BugLocator does, to make a fair comparison we have taken the
MAP values reported in [10] for CRs without similarity
consideration.

TABLE X. MEAN AVERAGE PRECISION OF BOTH TOOLS

