
IMPROVING BUG LOCALISATION 
USING LEXICAL INFORMATION 
AND CALL RELATIONS  
Tezcan Dilshener 
Doctoral Research in 
Software Evolution and Maintenance 
Computing and Communications Department 
The Open University, United Kingdom  



Introduction 
• Software applications require continued 
maintenance. 

• Developers  
•  need to comprehend an application prior to maintenance. 
•  perform lexical search and navigate the application’s structures.  

• Many methods to decide which path to take to 
locate the target one. 



Imagine… 
1.  Input JIRA Story ID and hit return 
2.  Automated search over the source code starts 
3.  Result lists all relevant classes for task at hand 

 

Improving*Bug*Localisa2on*Using**
Lexical*Informa2on*and*Call*Rela2ons*

by*Tezcan*Dilshener*

 Bug Report 

 

 
<bug id="2093" opendate="2010-03-30 04:03:07" fixdate="2010-04-01"> 
    <buginformation> 
       <summary> 

Make Quota event limit selectable 
</summary> 

       <description> 
By adding this feature we should allow the selection of specific events the 
limit is applied to. 

</description> 
    </buginformation> 
  </bug> 
 

 

Search “Algo” Rhythm 
 
 

 

Lexical(Similarity(

(
!

Event = Event 

Class%Call%Relations%

!

!

 

ConCodeSe 
Contextual Model 

Program Elements 

 

Example of Scoring 

Ranked Result List of Relevant Classes 

 
 
 
 
 
 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

Applications CRs Simple lexical 
match 

Lexical scoring + 
call relations  

AspectJ 286 32 
(11%) 

178 
(62%) 

Eclipse 3075 357 
(12%) 

1651 
(54%) 

Pillar-One 26 5 
(19%) 

15 
(58%) 

Pillar-Two 12 6 
(50%) 

11 
(92%) 

SWT 98 25 
(26%) 

82 
(84%) 

ZXing 20 0 
(0%) 

16 
(80%) 

Average  19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 

Research Aim 
•  Identify opportunities of using CR vocabulary and application 

call relations to  
•  address challenges faced by current combined approaches. 
•  reduce the program comprehension overhead.  

 

•  RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance with 
respect to a simple string search? 

•  RQ2: How does the combined approach, implemented in our tool 
perform compared to another state-of-the-art tool? 

Our Approach  
•  Integrate lexical information retrieval with structural 

program dependency search. 

• Present a ranked list of relevant classes for a change 
request (located in the top-N positions).  
1.  Search for classes using the terms extracted from CR’s. 
2.  Assign a score to class based on where search terms occur. 
3.  For each class, adjust score based on the call-relations to neighbours.  
4.  Sort result list using new score to group relevant classes together. 
 

 
Contributions 
• An algorithm using lexical and structural information 

suggests, in a ranked order, classes to be changed.  

• Vastly superior to simple string search, as performed by 
developers using an IDE.  

• Compared to an existing approach,  
•  improved ranking of affected classes.  
•  increased percentage of CRs for which relevant classes are retrieved. 
•  enhanced number of relevant classes suggested among the top-1 or -10. 

• Challenging to find the classes referred by a CR:  
•  in spite our improvements, over 40% of CRs may not be localised 
•  further enhance algorithm by considering domain concept relations.  

*©Copy*right*by*tezcan@dilshener.de*

Relevant 
 

Evaluation of Results 
•  RQ1: Lexical search locates less than 20% of CRs where as our 

approach locates more than 70%. 

 

•  RQ2: ConCodeSe locates more CRs per application and more 
relevant classes in the top-N than BugLocator. 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

 Simple lexical 
match 

Lexical scoring + 
call relations  

Average 19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 
performed the following tasks. First, we have conducted 
searches with BugLocator [10] and obtained the same results as 
reported on that study using their data set. Second, we have 
conducted the same searches using the data set of [10] with our 
tool. We als run both tools on our own data sets, Pillar-One and 
Pillar-Two. Finally, we compared the results obtained from 
both tools. 

BugLocator implements an approach similar to ours. It is 
initiated with a list of closed bug reports that reference the 
effected files. First, it creates an indexed corpus of terms 

Evaluation of Results (cont.) 

•  RQ2: Performance of our tool compared to another tool. 
•  ConCodeSe provides a 10 percentual point improvement over BugLocator.  

•  ConCodeSe locates more relevant classes in the top-N positions than 
BugLocator. 

•  Achieved significant gains (i.e. AspectJ and Pillar-One applications)  
•  MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26. 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

  
  

Better Same Worse 
top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 



Current research  
• Recognised the need for combining multiple analysis 

approaches to support program comprehension 

• Combined approaches  
•  first obtain a dynamic trace of involved classes  
•  attempt to retrieve other relevant classes based on call relations 

• Some of the challenges faced are,  
•  CR documents tersely described or for non-existing feature. 
•  complex class method call relations cause noise in results. 

 



Our aim 
•  Identify opportunities of using CR vocabulary and application 

call relations to  
•  address challenges faced by current combined approaches 
•  reduce the program comprehension overhead.  

 

•  RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance with 
respect to a simple string search? 

•  RQ2: How does the combined approach, implemented in our tool 
perform compared to another state-of-the-art tool? 



Traceability through IR 
•  Extract terms from class names, method signatures and identifiers   

•  i.e. identifier standAloneRisk is split into stand, alone and risk. 
•  Store extracted terms in corpus and index repository. 
•  During a search compare query terms with those in corpus.  
•  Matching score is based on lexical similarity or probabilistic distance. 
•  Present a ranked list of resulting program elements i.e. classes  
 

 
 

 

6 of 51 

 
Structural relations are inheritance relationships (i.e. class hierarchies) or caller-callee relations between the 
program elements. In the caller-callee relation, the caller is the method calling the current method and the callee 
is the method being called from the current method. 
 
Concept mapping is the process of assigning the concepts that exist in a problem domain to the program 
elements that implement them in an application, which addresses that problem domain. The mapping 
information will be stored in the contextual model for use during concept location. 
 
Concept location is the task of locating the program identifiers implementing the concepts at hand prior to 
performing software maintenance. 
 
Ontology is a formal, explicit specification of a shared conceptualisation to organise information and describe 
knowledge, according to Lesteven et al. [12]. Within the context of our research, ontology is the representation 
of knowledge by using program elements i.e. classes and methods and their relationships to one another.  
 
Domain specific ontologies are the ontologies that model the domain addressed by the software application like 
for example, ontology for the financial domain.  
 
Contextual model is the repository of information containing the abstract representation of the application’s 
source code encompassing the vocabulary found in identifier names and the structural relations existing between 
the program elements. The conceptual relations found within an application's domain are captured in domain 
specific ontologies and stored in the contextual model. In addition, the contextual model also includes the 
vocabulary of the other project artefacts (i.e. user guide) and the concept mappings.   

1.2.!An!example!of!the!Information!Retrieval!process!
In this section we give a general overview of how information retrieval systems are used in practice and point 
out the weakness of the current techniques. In a typical Information Retrieval (IR) approach for traceability 
between an application’s source code and its textual documentation like the user guide, the current techniques 
first analyse the project artefacts and build an abstract high level representation of an application in a repository 
referred as the corpus where the program elements implementing the concepts can be searched. 
  
The existing IR techniques extract the traceability information from the program elements and identifiers by 
parsing the application’s source code and storing the extracted information in the corpus. During the extraction 
process the identifier names are transformed into individual words (i.e. terms) according to known OOP coding 
styles like the camel case naming pattern where, for example, identifier standAloneRisk is split into stand, alone 
and risk. After this transformation, the resulting terms are stored in the repository with a reference to their 
locations in the program elements as illustrated at the top half of Figure 1. 
 

 
 

Figure 1. Information Retrieval (IR) process for traceability. 
 

Once the corpus is created, a developer initiates the concept location process by entering the search terms 
representing the concepts in a user interface. The IR method performs the search by comparing the terms entered 
on the query against the terms found in the underlying repository. The matching score is calculated based on 
lexical similarity or probabilistic distance between the terms, depending on the underlying IR method. Finally 
the results are displayed to the developer in a list ranked by their relevance as defined in the IR model.  
 

Program elements 
and identifiers 
extraction and 
storing process 

Concept location 
Query terms input
  

Results list of 
relevant program 
elements 

 Program 
source 
code files 

Repository of 
program elements 
and identifiers 

Search elements by 
comparing query 
terms against terms 
from the repository 



Our Approach  
•  Integrate lexical information retrieval with structural 

program dependency search. 

• Present a ranked list of relevant classes for a change 
request (located in the top-N positions).  
1.  Search for classes using the terms extracted from CR’s. 
2.  Assign a score to class based on where search terms occur i.e. on class 

name or in class body. 
3.  For each class, adjust score based on the call-relations to the immediate 

neighbouring called classes (or calling).  
4.  Sort result list using new score to group relevant classes together. 
 

 



Lexical Similarity + Call Relations 

Improving*Bug*Localisa2on*Using**
Lexical*Informa2on*and*Call*Rela2ons*

by*Tezcan*Dilshener*

 Bug Report 

 

 
<bug id="2093" opendate="2010-03-30 04:03:07" fixdate="2010-04-01"> 
    <buginformation> 
       <summary> 

Make Quota event limit selectable 
</summary> 

       <description> 
By adding this feature we should allow the selection of specific events the 
limit is applied to. 

</description> 
    </buginformation> 
  </bug> 
 

 

Search “Algo” Rhythm 
 
 

 

Lexical(Similarity(

(
!

Event = Event 

Class%Call%Relations%

!

!

 

ConCodeSe 
Contextual Model 

Program Elements 

 

Example of Scoring 

Ranked Result List of Relevant Classes 

 
 
 
 
 
 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

Applications CRs Simple lexical 
match 

Lexical scoring + 
call relations  

AspectJ 286 32 
(11%) 

178 
(62%) 

Eclipse 3075 357 
(12%) 

1651 
(54%) 

Pillar-One 26 5 
(19%) 

15 
(58%) 

Pillar-Two 12 6 
(50%) 

11 
(92%) 

SWT 98 25 
(26%) 

82 
(84%) 

ZXing 20 0 
(0%) 

16 
(80%) 

Average  19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 

Research Aim 
•  Identify opportunities of using CR vocabulary and application 

call relations to  
•  address challenges faced by current combined approaches. 
•  reduce the program comprehension overhead.  

 

•  RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance with 
respect to a simple string search? 

•  RQ2: How does the combined approach, implemented in our tool 
perform compared to another state-of-the-art tool? 

Our Approach  
•  Integrate lexical information retrieval with structural 

program dependency search. 

• Present a ranked list of relevant classes for a change 
request (located in the top-N positions).  
1.  Search for classes using the terms extracted from CR’s. 
2.  Assign a score to class based on where search terms occur. 
3.  For each class, adjust score based on the call-relations to neighbours.  
4.  Sort result list using new score to group relevant classes together. 
 

 
Contributions 
• An algorithm using lexical and structural information 

suggests, in a ranked order, classes to be changed.  

• Vastly superior to simple string search, as performed by 
developers using an IDE.  

• Compared to an existing approach,  
•  improved ranking of affected classes.  
•  increased percentage of CRs for which relevant classes are retrieved. 
•  enhanced number of relevant classes suggested among the top-1 or -10. 

• Challenging to find the classes referred by a CR:  
•  in spite our improvements, over 40% of CRs may not be localised 
•  further enhance algorithm by considering domain concept relations.  

*©Copy*right*by*tezcan@dilshener.de*

Relevant 
 

Evaluation of Results 
•  RQ1: Lexical search locates less than 20% of CRs where as our 

approach locates more than 70%. 

 

•  RQ2: ConCodeSe locates more CRs per application and more 
relevant classes in the top-N than BugLocator. 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

 Simple lexical 
match 

Lexical scoring + 
call relations  

Average 19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 
performed the following tasks. First, we have conducted 
searches with BugLocator [10] and obtained the same results as 
reported on that study using their data set. Second, we have 
conducted the same searches using the data set of [10] with our 
tool. We als run both tools on our own data sets, Pillar-One and 
Pillar-Two. Finally, we compared the results obtained from 
both tools. 

BugLocator implements an approach similar to ours. It is 
initiated with a list of closed bug reports that reference the 
effected files. First, it creates an indexed corpus of terms 

Evaluation of Results (cont.) 

•  RQ2: Performance of our tool compared to another tool. 
•  ConCodeSe provides a 10 percentual point improvement over BugLocator.  

•  ConCodeSe locates more relevant classes in the top-N positions than 
BugLocator. 

•  Achieved significant gains (i.e. AspectJ and Pillar-One applications)  
•  MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26. 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

  
  

Better Same Worse 
top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

Improving*Bug*Localisa2on*Using**
Lexical*Informa2on*and*Call*Rela2ons*

by*Tezcan*Dilshener*

 Bug Report 

 

 
<bug id="2093" opendate="2010-03-30 04:03:07" fixdate="2010-04-01"> 
    <buginformation> 
       <summary> 

Make Quota event limit selectable 
</summary> 

       <description> 
By adding this feature we should allow the selection of specific events the 
limit is applied to. 

</description> 
    </buginformation> 
  </bug> 
 

 

Search “Algo” Rhythm 
 
 

 

Lexical(Similarity(

(
!

Event = Event 

Class%Call%Relations%

!

!

 

ConCodeSe 
Contextual Model 

Program Elements 

 

Example of Scoring 

Ranked Result List of Relevant Classes 

 
 
 
 
 
 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

Applications CRs Simple lexical 
match 

Lexical scoring + 
call relations  

AspectJ 286 32 
(11%) 

178 
(62%) 

Eclipse 3075 357 
(12%) 

1651 
(54%) 

Pillar-One 26 5 
(19%) 

15 
(58%) 

Pillar-Two 12 6 
(50%) 

11 
(92%) 

SWT 98 25 
(26%) 

82 
(84%) 

ZXing 20 0 
(0%) 

16 
(80%) 

Average  19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 

Research Aim 
•  Identify opportunities of using CR vocabulary and application 

call relations to  
•  address challenges faced by current combined approaches. 
•  reduce the program comprehension overhead.  

 

•  RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance with 
respect to a simple string search? 

•  RQ2: How does the combined approach, implemented in our tool 
perform compared to another state-of-the-art tool? 

Our Approach  
•  Integrate lexical information retrieval with structural 

program dependency search. 

• Present a ranked list of relevant classes for a change 
request (located in the top-N positions).  
1.  Search for classes using the terms extracted from CR’s. 
2.  Assign a score to class based on where search terms occur. 
3.  For each class, adjust score based on the call-relations to neighbours.  
4.  Sort result list using new score to group relevant classes together. 
 

 
Contributions 
• An algorithm using lexical and structural information 

suggests, in a ranked order, classes to be changed.  

• Vastly superior to simple string search, as performed by 
developers using an IDE.  

• Compared to an existing approach,  
•  improved ranking of affected classes.  
•  increased percentage of CRs for which relevant classes are retrieved. 
•  enhanced number of relevant classes suggested among the top-1 or -10. 

• Challenging to find the classes referred by a CR:  
•  in spite our improvements, over 40% of CRs may not be localised 
•  further enhance algorithm by considering domain concept relations.  

*©Copy*right*by*tezcan@dilshener.de*

Relevant 
 

Evaluation of Results 
•  RQ1: Lexical search locates less than 20% of CRs where as our 

approach locates more than 70%. 

 

•  RQ2: ConCodeSe locates more CRs per application and more 
relevant classes in the top-N than BugLocator. 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

 Simple lexical 
match 

Lexical scoring + 
call relations  

Average 19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 
performed the following tasks. First, we have conducted 
searches with BugLocator [10] and obtained the same results as 
reported on that study using their data set. Second, we have 
conducted the same searches using the data set of [10] with our 
tool. We als run both tools on our own data sets, Pillar-One and 
Pillar-Two. Finally, we compared the results obtained from 
both tools. 

BugLocator implements an approach similar to ours. It is 
initiated with a list of closed bug reports that reference the 
effected files. First, it creates an indexed corpus of terms 

Evaluation of Results (cont.) 

•  RQ2: Performance of our tool compared to another tool. 
•  ConCodeSe provides a 10 percentual point improvement over BugLocator.  

•  ConCodeSe locates more relevant classes in the top-N positions than 
BugLocator. 

•  Achieved significant gains (i.e. AspectJ and Pillar-One applications)  
•  MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26. 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

  
  

Better Same Worse 
top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 



Example of Scoring 
•  Ranking with Lexical information and call-relations. 

 
 
 
 
 
 
<buginformation> 
      <summary>Quota event limit needs to be selectable</summary> 
      <description> 
           By enhancing this feature we should allow the selection of specific events the limit is applied to. 
      </description> 
</buginformation> 

Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie 
das Bild möglicherweise löschen und dann erneut einfügen.



Data extraction, storage and search 
 

 

 
 

                           AspectJ, Eclipse, Pillar-One, Pillar-Two, SWT, ZXing 

to the source code repository commits reference numbers. By 
manually analysing these references in the repository, we have 
listed all the affected classes per CR in one document. In case 
of the other four applications, i.e. Eclipse, AspectJ, SWT and 
ZXing, we are grateful to Zhang et al. [10] for providing their 
data sets, which included for each application the source code 
and a document containing all CRs with affected classes. 

C. Corpus preparation  
The obtained project artefacts, i.e. the source code files and 

the CRs, were processed using our source code analysis 
framework tool called ConCodeSe (Contextual Code Search 
Engine). We implemented the proposed scoring and ranking 
approach (Section II) in ConCodeSe by extending our previous 
work [2]. ConCodeSe utilises state of the art data extraction, 
persistence and search APIs (SQL, Lucene9, Hibernate10, JIM 
[5]). Figure 3 illustrates the extraction, storage, search and 
analysis stages. In the top layer, the corpus creation and search 
services tasks are executed automatically. 

 
Fig. 3.  ConCodeSe Data Extraction, Storage and Search. 

The left hand side (1) represents the extraction and storage 
of terms from the source code files and from the CRs. The 
middle part (2) shows the extraction and storage of the call-
graph information from the application binary files. Finally, in 
the search stage (3), the search for the classes affected by the 
CRs takes place. The search results are saved in a spreadsheet 
for additional statistical code analysis like the Spearman 
correlation coefficients tests [6]. 
 
1a. Source code vocabulary processing.  

In the first stage, the Java and Groovy sources are parsed 
using the source code-mining tool JIM, which automates the 
extraction and analysis of identifiers from source files. It parses 
the source, extracts the identifiers and splits them into terms. 
During this step, the identifiers and metadata from the source 
code abstract syntax tree are extracted and added to a central 
store, with information about their location. Also, the tool 
INTT [10, 12] within JIM is used to tokenise and split the 
identifier names into terms. INTT uses camel case, separators 
and other heuristics to split ambiguous boundaries, digits and 
lower cases. The extracted information, i.e. the identifier 

names, their tokenisation and source code location, is stored in 
a Derby11 relational database.  

1b. Textual documentation vocabulary processing. 
Also for the first stage, we developed a Java module using 

the Lucene framework to tokenise the text in the CR 
documents into terms. The module reuses Lucene’s Standard-
Analyzer class because it tokenises alphanumerics, acronyms, 
company names, and email addresses, etc. using a JFlex-based 
lexical grammar. It also includes stop-word removal. We used 
a publicly available stop-words list12 to filter them out. The 
extracted information is stored via the Hibernate persistence 
API in the same Derby database.  
 
2. Call-relations processing. 

For the second stage, we developed a Java call-graph 
construction module using the ASM13 tool. ASM is a simple 
API for decomposing, modifying, and recomposing binary Java 
classes. Our module reads the classes contained in the binary 
file of the application and builds a list of called classes (callee) 
and a list of calling classes (caller). Both the caller!callee  
and the callee!caller relations are stored in the same Derby 
database for use in the search stage to improve the scoring of 
the ranked classes in the result list. The constructed call-graph 
is an application-only call-graph [24] where calls to external 
libraries are ignored and only the call relations between the 
classes within the application packages are considered.  

3. CRs Search. 
For the third stage of the process, we developed a search 

module in ConCodeSe that runs SQL queries to search (1) for 
the occurrences of the terms in the project artefacts and (2) for 
all the relevant classes of a CR. The manually identified classes 
affected by each CR are used to compute precision and recall 
of the search results. Recall measures the completeness of the 
results and precision measures the accuracy of the results. 

IV. EVALUATION RESULTS 
Our approach considers the immediate neighbouring 

classes in the call graph and introduces a scoring technique to 
determine the relevance of a class to the search query terms. In 
[25] it is concluded that exploring 1 to 2 edges and top-5 to 
top-10 gives the best results. Therefore to further compare the 
effectiveness of our approach with the proposed method in 
[10], we used top-N ranking. In the rest of the paper, we 
consider a class to be located if it was ranked in the top-N for 
some N, and we consider a CR to be located if at least one of 
its affected classes was located. 

 
RQ1: Does utilizing a combined approach based on lexical 
information and call relations improve the search performance 
with respect to a simple lexical string search? 

Our first aim was to check whether simple string searching 
with CR terms is sufficient to find the affected classes. The 

___________________________________________________________ 
9. http://lucene.apache.org/java/docs/index.html 
10. http://www.hibernate.org 
11. http://db.apache.org/derby 
12. http://norm.al/2009/04/14/list-of-english-stop-words/ 

13. http://asm.ow2.org/ 

 
 

 
 

 
 
 

 
 

Total Project Artefacts of our Case Study 

Applications Source files CRs Call relations  

6 24,915 3,517 94,864 

 

6 of 51 

 
Structural relations are inheritance relationships (i.e. class hierarchies) or caller-callee relations between the 
program elements. In the caller-callee relation, the caller is the method calling the current method and the callee 
is the method being called from the current method. 
 
Concept mapping is the process of assigning the concepts that exist in a problem domain to the program 
elements that implement them in an application, which addresses that problem domain. The mapping 
information will be stored in the contextual model for use during concept location. 
 
Concept location is the task of locating the program identifiers implementing the concepts at hand prior to 
performing software maintenance. 
 
Ontology is a formal, explicit specification of a shared conceptualisation to organise information and describe 
knowledge, according to Lesteven et al. [12]. Within the context of our research, ontology is the representation 
of knowledge by using program elements i.e. classes and methods and their relationships to one another.  
 
Domain specific ontologies are the ontologies that model the domain addressed by the software application like 
for example, ontology for the financial domain.  
 
Contextual model is the repository of information containing the abstract representation of the application’s 
source code encompassing the vocabulary found in identifier names and the structural relations existing between 
the program elements. The conceptual relations found within an application's domain are captured in domain 
specific ontologies and stored in the contextual model. In addition, the contextual model also includes the 
vocabulary of the other project artefacts (i.e. user guide) and the concept mappings.   

1.2.!An!example!of!the!Information!Retrieval!process!
In this section we give a general overview of how information retrieval systems are used in practice and point 
out the weakness of the current techniques. In a typical Information Retrieval (IR) approach for traceability 
between an application’s source code and its textual documentation like the user guide, the current techniques 
first analyse the project artefacts and build an abstract high level representation of an application in a repository 
referred as the corpus where the program elements implementing the concepts can be searched. 
  
The existing IR techniques extract the traceability information from the program elements and identifiers by 
parsing the application’s source code and storing the extracted information in the corpus. During the extraction 
process the identifier names are transformed into individual words (i.e. terms) according to known OOP coding 
styles like the camel case naming pattern where, for example, identifier standAloneRisk is split into stand, alone 
and risk. After this transformation, the resulting terms are stored in the repository with a reference to their 
locations in the program elements as illustrated at the top half of Figure 1. 
 

 
 

Figure 1. Information Retrieval (IR) process for traceability. 
 

Once the corpus is created, a developer initiates the concept location process by entering the search terms 
representing the concepts in a user interface. The IR method performs the search by comparing the terms entered 
on the query against the terms found in the underlying repository. The matching score is calculated based on 
lexical similarity or probabilistic distance between the terms, depending on the underlying IR method. Finally 
the results are displayed to the developer in a list ranked by their relevance as defined in the IR model.  
 

Program elements 
and identifiers 
extraction and 
storing process 

Concept location 
Query terms input
  

Results list of 
relevant program 
elements 

 Program 
source 
code files 

Repository of 
program elements 
and identifiers 

Search elements by 
comparing query 
terms against terms 
from the repository 

7 of 51 

We now give an example to demonstrate the IR traceability principles described above. In our previous work, we 
have built a searchable corpus from the project artefacts of a financial application. One of the concepts 
implemented in this application is covariance, which depends on other financial concepts: index and volatility. 
Figure 2 shows the section of the source code in the class ReaderCorrelation where the "covariance" is 
implemented. The method buildCovariance() gets the dependent values by calling the relevant classes 
ReaderIndex and ReaderVolatiliy. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Source code of program elements related to concept covariance. 

 
After extracting the words form the program identifiers and storing them in the underlying corpus, searching for 
the term "covariance" using an existing retrieval (IR) model detects the methods getCovariance() and 
buildCovariance() and displays the results to the developer as illustrated in Figure 3. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Search results using lexical similarity approach, finds partial methods. 
 

Also it can be seen in Figure 3 that the search has failed to detect the method calcCovar() as well as the 
methods getVola() and getIndex() from the related classes. This is because: 
 

1- The approach considered only the lexical similarity between the search term and the terms extracted 
from the program identifiers. Since the search term “covariance” does not occur in any of the other 
relevant program elements, the methods calcCovar(), getVola() and getIndex() are not detected. 
 

2- The relational clues to other classes are not considered thus the relevant program elements based on 
conceptual relations like the called classes ReaderIndex and ReaderVolatiliy are not detected.   

 
3- The abbreviated forms of the concepts like Covar obtained after identifier transformation from program 

element calcCovar() caused ambiguity in determining the relevance of the method for the search.   
 
One of the approaches to represent the relational context of an application’s domain in software engineering is to 
capture the knowledge embedded in the project artefacts in domain specific ontologies. The existing approaches 
that make use of relational information defined in ontology and in structural relations like the call information, 
determine the relevance of other program elements (i.e. methods) based on whether the call to the method is also 
captured on the ontology graph or not.  
 
In our example, there exist a conceptual relation between the concept Covariance and the concepts Index and 
Volatility. The existing approaches detect the relevance of the called method getIndex() based on  the concept 
relation by recognising the concept name as part of the method name. However the approaches fail to detect the 
method getVola() because its name does not contain the concept. Therefore during concept location these 

public class ReaderCorrelation extends 
BaseRiskCorrelation{ 
  
 public decimal getCovariance(int pIndexID){ 
  return buildCovariance(pIndexID); 
 } 
 
 private decimal buildCovariance(int pIndexID){ 
   int actIndexID = ReaderIndex.getIndex(pIndexID); 
   decimal vola = ReaderVolatility.getVola(actIndexID); 
 return calcCovar(vola, actIndexID); 
 } 
 
 private decimal calcCovar(int pVola, float pAssetMV){ 
 } 
 
} 

public class ReaderIndex extends 
BaseRiskIndex{ 
 public decimal getIndex(int pIndex){ 
  return buildIndex(pIndex); 
 } 
 
} 

public class ReaderVolatility { 
 
 public decimal getVola(int pActIndx){ 
  return buildVolatility(pIndexID); 
 } 
 
} 

Search query: covariance 
 
2 hit(s) found. 
 
Class   Method   
ReaderCorrelation buildCovariance() 

getCovariance() 
 
 
 
 
 

18 of 51 

containing the expanded versions of abbreviations improved the search results [32], these techniques still suffer 
from the absence of domain specific contextual information [30].   
 
The advantages of utilising ontologies to provide the required contextual information by modelling the 
knowledge to aid program comprehension in software maintenance are also exploited [33, 35]. However, the 
existing approaches assume that terms extracted from program identifiers are made up of words that can be 
directly mapped to one another without being further evaluated [34]. Also, these approaches fall short on 
utilising the available information like the call graph navigation efficiently [36] and expect that applications are 
programmed by strictly following OOP guidelines [25].  
 
Despite the weaknesses of current techniques that utilise ontologies, the applicability combined with semantic 
information in other disciplines to aid concept location is successfully demonstrated [13]. The advancement 
towards semantic search rather than lexical search is also acknowledged [37]. Most existing approaches combine 
techniques, some even combine ontologies and call-graphs, however as illustrated they fall short of utilising the 
available information efficiently. Either these approaches rely on lexical similarity without considering 
abbreviations or the ontology relations are presumed to be correlating to method calls during call-graph 
navigation resulting in structural relations (i.e. class hierarchies) to go undetected. In addition, the available tools 
fail to keep the underlying repository up to date with the project artefacts, for example FLAT*3 tool gets out of 
date by each change hence leading to inconsistencies between the actual and the indexed versions of the code.  
 
The added substantial value of our proposed approach compared to existing work is that it will combine domain 
ontologies with existing natural language and call-graph techniques in one method by efficiently utilising the 
information available from the project artefacts. The constructed contextual model will provide a consistent set 
of clues to aid program comprehension during software maintenance. Also compared to current techniques, our 
approach will consider ontology supported abbreviation expansion and semi-automatic concept extraction. Thus 
in the next section, the two most promising current techniques are described and the gaps they still pose are 
illustrated to motivate our proposed research in addressing the identified shortcomings. 
 

3.5.!Conclusion!
Based on our literature review one of the most promising approaches is presented by Hill et al. [46]. The 
approach extracts nouns, verbs, direct objects and prepositional phrases from method signatures and program 
identifiers to enable contextual searching. This allows for capturing the word context of natural language queries 
for software maintenance. However, the context fails to provide relational clues in detecting all the relevant 
program elements, especially those ones where the search terms are not used on the declaration of searched 
program elements. Figure 1 illustrates the partial call hierarchy graph for displaying the concepts "correlation" 
and "covariance" to the user of the financial application. Searching for the term "covariance" using the approach 
in [46] detects the methods numbered 2, 4 and 5 but fails to detect the methods numbered 3, 7 and 8. This is 
because the context of the approach fails to provide relational clues to also detect the methods 3, 7 and 8.   
 

to filter out those classes that do not have any direct call references from the selected classes. For example, the 
classes without a direct call containing the hard words "correlation", "index" and "volatility" will be filtered. The 
method 1 is not called directly from the class “ReaderCorrelation” and will be omitted from the results. 

 
Subsequently, the ranking of the results will be established based on the frequency of the terms in the source 

code and in the text documentation [4]. Finally, the results will be presented by grouping the extracted method 
signatures based on the call hierarchy distance identified in the call-graph to facilitate relevance. For example the 
methods 3, 7 and 8 are to be grouped under 5. Similarly, the n-gram concepts will be searched by expanding the 
query term with their "isA" related concept from OWL and adding the related hard words from the corpus. For 
example, the query term "standalone" will include the query term "risk" and the hard words “std, stand and 
alone” to cater for "standalone risk". 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.  Partial call graph of displaying "Covariance". 

In addition, we will conduct searches over the corpus using existing IR methods like LSI and cluster analysis 
(CA). In LSI, the corpus artefacts will be indexed and in CA, they will be grouped by applying an optimisation 
algorithm. Comparing the results against our gold standards [4], we hope the results will demonstrate the benefit 
of leveraging the contextual information captured by our approach in existing IR methods. 

7. Validation 

This research will be conducted using the financial applications at our industrial partner, a global financial IT 
solutions provider located in southern Germany. The approaches defined in [2] and [6] will be investigated to 
determine how well they perform when the relations between the source code entities are also considered using 
the domain specific ontologies. This will be measured by precision and recall. Comparing the results obtained 
from the generated corpus against the manually identified classes and concepts will assess the validity of the new 
concept mapping approach. The hypothesis is that the combination of the methods complemented by contextual 
information using domain specific ontologies will improve precision and recall results obtained in [4]. Although, 
the applicability of the research approach is demonstrated in the financial domain, the generalisability in other 
industries is only dependent on the definition of domain specific ontologies for that industry before it can be 
adopted.  

VI. THREATS TO VALIDITY 
The internal validity addresses the relationship between the cause and the effect of the results to verify that the 

observed outcomes are the natural product of the implementation. A single developer (the first author) listed the 
concepts. This threat to internal validity was partly addressed by having the concepts validated by other 
stakeholders.  

 
The construct validity addresses whether the conclusions can legitimately be made from the operationalization 

of the theories. We only used single-word concepts, while business concepts are usually compound terms. This 
threat to construct validity will be addressed in future work:  we will see if term co-occurrence improves 
precision.  

 

 
 

Figure 1.  Partial call graph of displaying "Covariance". 

 



Evaluation of Results 
• RQ1: Lexical-only vs combined approach for N = 10 
•  Simple Lexical search approach 

•  on average, less than 20% of CRs were located. 
 

•  CR descriptions  
•  open source applications contain indications to class names 
•  business oriented applications are very terse 

•  Our combined search approach 
•  on average, more than 70% of CRs were located. 

search resulted in very poor performance values: on average, 
less than 20% of an application’s CRs were located, as shown 
in the ‘lexical match’ column of Table IV. Since the source 
code is consulted during maintenance, this lack of good 
agreement between the code’s and the CRs’ vocabulary points 
to potential inefficiencies during maintenance. 

We analysed possible reasons for this and found that CR 
descriptions of the open source developer oriented applications, 
i.e. Eclipse and AspectJ, expose a lot of indications to the 
program elements i.e. class names, which aids their traceability 
to the source code. However, in case of the two business 
oriented applications, i.e. Pillar-One and Pillar-Two, the CR 
descriptions written by users or support desk team members are 
very terse (see Table II). This leads to inefficiencies when 
attempting to locate the relevant classes required to implement 
a CR. Also, in certain cases, some of the class names and the 
CR descriptions reflect the search terms explicitly, which helps 
finding the affected classes more accurately, for example in 
case of Pillar-Two CR #2074 a possible search term ‘lambda’ 
occurs in the class names and identifiers as shown in Table II. 
However in Pillar-One CR #1619, neither the class names nor 
the CR reflects a possible search term ‘poisson’ (see Table II). 

TABLE II.  SAMPLE TERM OCCURANCES IN ARTEFACTS 

CR Description Affected Classes Identifier 
2074 
(P2) 

Dialog to 
distribute 
lambda factors 
similar to other 
module 

HelperDistributeLambda 
RiskLambda 
ProcessorCopyLambda 
HelperCopyLambda  

calculateLambdas,  
readLambda,  
hasLambdaDiversify 
lambdaFactors 

1619 
(P1) 

unrecoverable 
error for error 
parameter 
poisson. 

LognormalTypeIIPareto 
TypeIIParetoDistribution 

alphaAndLambda,  
muAndLambda 

 
In general, either the action-oriented nature of the CRs did 

not provide clues to the search terms being addressed directly 
or the class names of the applications did not reflect the search 
terms explicitly. We attempt to address these issues using the 
combined approach. We started our experiments with Pillar-
Two because of our industrial experience with it. For example, 
CR #2093 has 6 affected classes and the lexical search returned 
61 classes, with the 6 ranked as shown in Table III. The table 
also shows the improved ranking after using the call relations 
(Fig. 2).  

TABLE III.  SAMPLE RANKING WITH LEXICAL AND CALL-RELATIONS 
SCORING 

Pillar-Two classes affected by 
 CR # 2093 

Lexical 
ranking 

Lexical + call 
relations rank 

QuotaShareContractStrategy.java 2 3 

EventAalLimitStrategy.java 31 1 

LimitStrategyType.groovy 33 2 

EventLimitStrategy.java 4 4 

NoneLimitStrategy.java 38 10 

ILimitStrategy.java 5 5 
 

Table IV shows the overall comparison of the lexical-only 
vs the combined approach for N = 10. The percentage of CRs 
located, i.e. with at least one affected class ranked in the top-
10, increased considerably for every application and we can 
therefore answer RQ1 positively.  

TABLE IV.  NUMBER OF CRS FOUND BY VARIOUS SEARCH TYPES 

 Simple lexical 
match 

Lexical scoring + 
call relations  

Average 19% 72% 

 
In certain cases, we observed that none of the search terms 

extracted from the CR description are found in the source code 
of a class. Consequently, in those cases the class at hand could 
not be used as the entry point to navigating the call-graph to 
re-rank its position in the result list. In such situations, 
searching by VSM model as described in Section 2.B provided 
the needed leverage. As illustrated in Table V, for CR # 
103862 of SWT, 2 out of the 6 affected classes are ranked in 
the top-10. 

TABLE V.  SAMPLE CR CLASSES WITHOUT CALL-RELATIONS 

SWT CR# 103862  
Subset of classes  

ConCodeSe Ranking 

Lexical  With VSM 

SWT.java Not found 10 

Composite.java Not found 21 

Display.java Not found 9 
 

Overall, we learned that searching for classes affected by a 
CR is different from searching for the classes implementing a 
concept because the CRs tend to have more action-oriented 
characteristics and their unit-of-work may cross multiple 
concepts. Hence a CR may document what the users 
experience on the User Interface, whereas, in the background 
other program elements may be of relevance. In other words, 
classes implementing different concepts may be relevant within 
the context of a CR. Our approach addresses these challenges 
by combining multiple sources of information, i.e. CR 
vocabulary and call relations to provide an improved search 
tool for the developers during maintenance tasks. 

 

RQ2: How does the approach, implemented in our tool, 
perform compared to a state-of-the-art tool?  

To compare the search performance of ConCodeSe when 
compared to an existing bug localisation tool, we have 
performed the following tasks. First, we have conducted 
searches with BugLocator [10] and obtained the same results as 
reported on that study using their data set. Second, we have 
conducted the same searches using the data set of [10] with our 
tool. We als run both tools on our own data sets, Pillar-One and 
Pillar-Two. Finally, we compared the results obtained from 
both tools. 

BugLocator implements an approach similar to ours. It is 
initiated with a list of closed bug reports that reference the 
effected files. First, it creates an indexed corpus of terms 



Evaluation of Results (cont.) 

•  RQ2: Performance of our tool compared to another tool. 
•  ConCodeSe provides a 10 percentual point improvement over BugLocator  

•  ConCodeSe locates more relevant classes in the top-N positions than 
BugLocator. 

•  Achieved significant gains (i.e. AspectJ and Pillar-One applications)  
•  MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26. 

extracted from the source code files. Secondly, it searches the 
corpus for the relevant classes using the terms found in a CR. 
The result produced is a ranked list of files based on textual 
similarity between the queried terms from the CR and the terms 
extracted from the source code files. The ranking is obtained by 
combining two different VSM similarity calculations (i.e. how 
source code file terms are matched with the terms found in the 
bug reports). Those classes that are ranked within the top-1 or 
top-10 are considered effectively localised. Based on this, to 
compare the performance of BugLocator and our tool, we also 
consider the classes ranked in top-1 and top-10 as effectively 
localised if they match the ones listed in CR.  

TABLE VI.  THE LOCALISATION PERFORMANCE OF BOTH TOOLS 

 Top-1 Top-10 
Bug 

Locator 
Con 

CodeSe 
Bug 

Locator 
Con 

CodeSe 
Average 26% 35% 59% 69% 

 
Table VI shows the number and percentage of CRs 

localised by each tool for each N. On average our tool provides 
a 10 percentual point improvement (35% over 26% and 69% 
over 59% respectively) over BugLocator. For example, in case 
of SWT ConCodeSe has put an affected class in the top 
position for 55% (54/98) of the CRs, whereas BugLocator only 
achieved it for 32% (31/98) of the CRs. The improvement in 
performance over BugLocator was also noticeable in the top-10 
ranking category, for example in case of ZXing 85% with 
ConCodeSe compared to 70% with BugLocator. However, in 
case of Eclipse and AspectJ ConCodeSe performs only slightly 
better in the top-1 ranking category.  

In addition, for both tools, we calculated the recall 
performance, i.e. the number of classes that gets into the top-1 
and top-10 positions per CR. After all, putting more relevant 
classes in the top-N positions is bound to be more beneficial for 
the developers. Table VII shows that on average for 19% and 
30% of the CRs our tool has located more relevant classes in 
the top-1 and top-10 positions respectively than BugLocator. 
Also our tool performs just as well for 72% and 54% of the 
CRs in top-N cases while performing worse in 9% and 16% 
respectively. For example, for AspectJ, there were 39 CRs 
where ConCodeSe ranked an affected class in the first position 
and BugLocator didn’t, 23 CRs where BugLocator ranked an 
affected class in the first position but ConCodeSe didn’t, and 
for the remaining CRs, either both tools ranked an affected 
class first or both didn’t. 

TABLE VII.  CONCODESE RECALL PERFORMANCE 

 Applications Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 
 

In some cases BugLocator performs better than our tool 
because it considers the comments of the source code. We also 
tried to consider the comments and repeated the same search 
tasks. As shown in Table VIII, on average the performance has 
improved from 72% to 80% for top-1 and from 54% to 70% 

for top-10 positions in locating just as many relevant classes as 
BugLocator for the CRs. Consequently, the performance 
advantage over BugLocator in the same top-1 and top-10 
positions has dropped from 19% to 10% and from 30% to 19% 
respectively while the poor performance values increased from 
9% to 15% and from 16% to 25% respectively.   

TABLE VIII.  CONCODESE RECALL PERFORMANCE WITH COMMENTS 

  Better Same Worse 

  top-1 top-10 top-1 top-10 top-1 top-10 

Average 10% 19% 80% 70% 15% 25% 
 

 Overall, we found that catering for the comments tends to 
produce noise so the recall (i.e. number of affected classes 
ranked in the top-N) deteriorates. For example, in case of the 
SWT CR #84906, our approach fails to rank any classes 
whereas BugLocator ranks one class in the top-10. When 
comments are considered, ConCodeSe finds the same relevant 
class as BugLocator, in position 30. Since this is not a 
significant advantage, we decided to leave comments for 
future work.  

TABLE IX.  AGGREGATE RECALL RESULTS FOR THE SIX 
APPLICATIONS  

Statistics 
BugLocator ConCodeSe 

Top-1 Top-10 Top-1 Top-10 

Average 0.28 0.89 0.38 1.25 
Median 0 0.8 0.3 1.2 
Std. Dev 0.44 0.95 0.53 1.27 

 

Furthermore, we used the non-parametric Wilcoxon 
matched pairs test to statistically validate the outcome of our 
study since the results follow a non-standard distribution. 
Based on the values obtained (Z=-3.0594, W=0 and 
p=0.00222), we conclude that on average ConCodeSe locates 
significantly (p≤ 0.05) more relevant classes in the top-N 
positions than BugLocator (e.g. 1.25 vs. 0.89) as shown in 
Table IX.  

Finally, we compared the Mean Average Precision (MAP) 
values of both tools. MAP provides a single-figure measure of 
quality across recall levels. Among evaluation measures, MAP 
has been shown to have especially good discrimination and 
stability [32]. MAP is calculated as the sum of all the average 
precision values for each CR divided by the number of CRs for 
a given application. Average precision is the precision value 
obtained for each relevant class listed in the top-N set. 
BugLocator utilises a similarity score that captures the 
similarity of previously reported and implemented CRs to help 
facilitate localisation of relevant classes for a new CR. Since 
our tool does not consider similarity among CRs like 
BugLocator does, to make a fair comparison we have taken the 
MAP values reported in [10] for CRs without similarity 
consideration.  

TABLE X.  MEAN AVERAGE PRECISION OF BOTH TOOLS 

  
  

Better Same Worse 
top-1 top-10 top-1 top-10 top-1 top-10 

Average 19% 30% 72% 54% 9% 16% 



Discussion 
• Supplementing lexical searches with call relationship 

data noticeably improve search accuracy.  

• Enhancing lexical scoring with call-relations leads to 
superior search results. 

• Provides entry points to the relevant classes within the 
context of the CR. 

• CRs revealed two characteristics:  
•  (1) developer nature with technical details i.e. references to code.  
•  (2) descriptive nature with business terminology i.e. use of concept. 



Discussion 
• Multiple classes may implement a concept  

•  on average only 3 classes listed as changed in a CR.  

• Change Requests represent a unit-of-work  
•  concept search in the context of CRs results in false positives.  

• Conceptual responsibility v.s. technical functionality  
•  mediate improved communication with business users. 
•  finding relevant classes by considering the architecture. 

• Domain vocabulary in change request descriptions 
•  list of relevant domain vocabulary used in the code. 
•  intelligently suggest the terms for selection when creating a CR. 



Related Work 
• On the use of call relations to recover traceability links, 

Hill et al. [1] proposed similar approach to ours.  
•  a query is created with search terms,  
•  source code is searched for matching methods by using LSI method.  
•  a term/document frequency (tf/idf) score is obtained.  
•  call-graph is utilized to evaluate relevance of neighbouring methods.  

• Petrenko et al. [2] presented a technique called DepIR 
that combines Dependency Search (DepS) with IR.  
•  query to obtain a ranked list of methods retrieved by probabilistic LSI.  
•  10 methods with highest ranks are selected as entry points.  
•  explore the shortest path on the call-graph to relevant method. 

 

 



Contextual Model 



Concluding Remarks 
• An algorithm using lexical and structural information 

suggests, in a ranked order, classes to be changed.  

• Vastly superior to simple string search, as performed by 
developers using an IDE.  

• Compared to an existing approach,  
•  improved ranking of affected classes.  
•  increased percentage of CRs for which relevant classes are retrieved. 
•  enhanced number of relevant classes suggested among the top-1 or -10. 



Challenges 
•  (1) How do I determine the relevance of a class for a CR? 

•  List of classes that has the search terms.  
•  List of classes that does not have the search terms and still 

connected with those from above list. 
•  Are they still relevant within the context of a CR? 
 

•  (2)How do I enrich the CR vocabulary to create a context? 
•  Cluster of terms based on term frequency in source code and CR. 
•  Use structural relations i.e. package names or inheritance. 



Challenges 
•  (1) How to determine the relevance of a class for a CR? 
 

 
  <bug id="2148" opendate="2010-03-30 04:03:07" fixdate="2010-04-01 03:04:39"> 
    <buginformation> 
      <summary>Percentile/VaR/TVaR cannot be displayed second time</summary> 
       <description>How to reproduce: run any  parametrization  open results  show e.g. 99.5% PROFIT VaR  
    hide column again  try to show 99.5% PROFIT VaR again  ERROR nothing happens 
  </description> 
    </buginformation> 
    <fixedFiles> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.AbstractFunction.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.AbstractQuantilePerspectiveBasedFunction.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.FunctionDescriptor.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.IFunction.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.ParametrizedFunctionDescriptor.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.QuantileBasedFunctionDescriptor.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.SingleIterationFunction.java</file> 
       <file>org.pillarone.riskanalytics.application.ui.result.action.keyfigure.ParametrizedKeyFigureAction.java</file> 
       <file>org.pillarone.riskanalytics.application.ui.result.action.keyfigure.QuantilePerspectiveBasedKeyFigureAction.java</file> 
       <file>org.pillarone.riskanalytics.application.ui.result.model.ResultViewModel.java</file> 
    </fixedFiles> 
  </bug> 

 
TvarFunction, 0.075, tvar,
VarFunction, 0.0375, var,
PercentileFunction, 0.0375, percentile,
ProfitCommission, 0.0375, profit,

 

 
      <summary>Percentile/VaR/TVaR cannot be displayed second time</summary> 
       <description>How to reproduce: run any  parametrization  open results  show e.g. 99.5% PROFIT VaR  
    hide column again  try to show 99.5% PROFIT VaR again  ERROR nothing happens 

</description> 
        <file>org.pillarone.riskanalytics.application.dataaccess.function.AbstractFunction.java</file> 
        <file>org.pillarone.riskanalytics.application.dataaccess.function.AbstractQuantilePerspectiveBasedFunction.java</file> 
        <file>org.pillarone.riskanalytics.application.dataaccess.function.FunctionDescriptor.java</file> 
        <file>org.pillarone.riskanalytics.application.dataaccess.function.IFunction.java</file> 
        <file>org.pillarone.riskanalytics.application.dataaccess.function.ParametrizedFunctionDescriptor.java</file> 
       <file>org.pillarone.riskanalytics.application.dataaccess.function.QuantileBasedFunctionDescriptor.java</file> 
        <file>org.pillarone.riskanalytics.application.dataaccess.function.SingleIterationFunction.java</file> 
        <file>org.pillarone.riskanalytics.application.ui.result.action.keyfigure.ParametrizedKeyFigureAction.java</file> 
        <file>org.pillarone.riskanalytics.application.ui.result.action.keyfigure.QuantilePerspectiveBasedKeyFigureAction.java</file> 
        <file>org.pillarone.riskanalytics.application.ui.result.model.ResultViewModel.java</file> 

 
TvarFunction, 0.075, tvar,
VarFunction, 0.0375, var,
PercentileFunction, 0.0375, percentile,
ProfitCommission, 0.0375, profit,

 
?



Challenges 
•  (2) How to enrich CR vocabulary to create a context? 

•  Looking at some CR descriptions and source code of the affected 
classes revealed some n-term usage like  
•  "poisson distribution"  
•  "result template" 
•  "simulation page"  
•  "save dialog”  

•  Also there seems to be a usage mapping between the terms like,  
•  Show   --->  perspective  
•  Second time  --->  iteration 
•  CVS export  --->  exportCVS   
•  Percentile  --->  quantile  



Future work 
• Challenging to find the classes referred by a CR:  

•  in spite our improvements, over 40% of CRs may not be localised. 

• Results emphasize combined tool support needed.  

•  Further enhance our algorithm by considering domain 
concept relations.  

• An application base with well documented repository like 
Prepaid for further research by considering additional 
artefacts like git commits history.  



Thank you    
• Contact me per email:  

•  tezcan@dilshener.de 

• My Publications: 
•  http://crc.open.ac.uk/People/Tezcan_Dilshener_41C5 

 
• References 

[1] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the Neighborhood with Dora to Expedite Software Maintenance", in 
Proc. 22nd Int'l Conf. on Automated Software Engineering, 2007, pp. 14-23 
 
[3] M. Petrenko and V. Rajlich, “Concept location using program dependencies and information retrieval (DepIR),” Information 
and Software Technology, vol. 55, no. 4, pp. 651–659, 2013. 


