IMPROVING BUG LOCALISATION
USING LEXICAL INFORMATION
AND CALL RELATIONS

Tezcan Dilshener
Doctoral Research in

Software Evolution and Maintenance 6‘
Computing and Communications Department
The Open University, United Kingdom —

The Open
University

Introduction

- Software applications require continued
maintenance.

- Developers
- need to comprehend an application prior to maintenance.
- perform lexical search and navigate the application’s structures.

- Many methods to decide which path to take to
locate the target one.

Imagine...
1. Input JIRA Story ID and hit return

2. Automated search over the source code starts

3. Result lists all relevant classes for task at hand

Pillar-Two classes affected by | Lexical

CR #2093 ranking
QuotaShareContractStrategy.java 2
EventAalLimitStrategy.java 31
LimitStrategy Type.groovy 33
EventLimitStrategy.java 4
NoneLimitStrategy.java 38

[LimitStrategy.java

N |

Current research

- Recognised the need for combining multiple analysis
approaches to support program comprehension

- Combined approaches

- first obtain a dynamic trace of involved classes
- attempt to retrieve other relevant classes based on call relations

- Some of the challenges faced are,
- CR documents tersely described or for non-existing feature.
- complex class method call relations cause noise in results.

Our aim

- Identify opportunities of using CR vocabulary and application
call relations to

- address challenges faced by current combined approaches
- reduce the program comprehension overhead.

- RQ1: Does utilizing a combined approach based on lexical
information and call relations improve the search performance with
respect to a simple string search?

- RQ2: How does the combined approach, implemented in our tool
perform compared to another state-of-the-art tool?

Traceabillity through IR

Extract terms from class names, method signatures and identifiers
i.e. identifier standAloneRisk is split into stand, alone and risk.

Store extracted terms in corpus and index repository.

During a search compare query terms with those in corpus.
Matching score is based on lexical similarity or probabilistic distance.
Present a ranked list of resulting program elements i.e. classes

Program
source

code files

Ty

Concept location
Query terms input

Program elements
and identifiers
extraction and
storing process

Repository of

program elements
and identifiers

v

Search elements by
comparing query

terms against terms
from the repository

Results list of
relevant program
elements

L
Our Approach

- Integrate lexical information retrieval with structural
program dependency search.

- Present a ranked list of relevant classes for a change

request (located in the top-N positions).
1. Search for classes using the terms extracted from CR’s.

2. Assign a score to class based on where search terms occur i.e. on class
name or in class body.

3. For each class, adjust score based on the call-relations to the immediate
neighbouring called classes (or calling).

4. Sort result list using new score to group relevant classes together.

Lexical Similarity + Call Relations

Example of Scoring

- Ranking with Lexical information and call-relations.

Das Bild kann nicht angezeigt werden. Dieser Computer verfiigt méglicherweise Giber zu wenig Arbeitsspeicher, um das Bild zu 6ffnen, oder das Bild ist beschadigt. Starten Sie den Computer neu, und 6ffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, miissen Sie
“ das Bild moglicherweise I6schen und dann erneut einfiigen.

<buginformation>
<summary>Quota event limit needs to be selectable</summary>
<description>
By enhancing this feature we should allow the selection of specific events the limit is applied to.

</description>
</buginformation>

Data extraction, storage and search

I Contextual Model Creation and Search Services I
. | 1
- 2O =)
- I : I
VDL&‘J?‘L‘L]_.MY I Call—R?la_ttons I CR/Defect
Persisting Persisting o
I—hberuate 1 Hibemate | search
I F 3 I
1 |
| |
Vocabulary Vocabulary | Call-graph | Search
Extraction Extraction | Extraction I A ;lvsis
JIM S IINTT Lucens Analyser I ﬂS\'I I B
A A I I
1 |
Java/Groovy CR/Defects, I 1 Amnalysis
Source Code Concepts I Application i Results
Files Documents i binary file 1 Excel file
1 1

Total Project Artefacts of our Case Study

Applications | Source files | CRs | Call relations

6 24915 3,517 94,864

Aspectd, Eclipse, Pillar-One, Pillar-Two, SWT, ZXing

Evaluation of Results

- RQ1: Lexical-only vs combined approach for N =10

» Simple Lexical search approach
* on average, less than 20% of CRs were located.

* CR descriptions
» open source applications contain indications to class names
* business oriented applications are very terse

* Our combined search approach
» on average, more than 70% of CRs were located.

Simple lexical Lexical scoring +
match call relations

Average 19% 72%

Evaluation of Results (cont)

RQ2: Performance of our tool compared to another tool.

ConCodeSe provides a 10 percentual point improvement over BuglLocator

Top-1 Top-10
Bug Con Bug Con
Locator CodeSe Locator CodeSe
Average 26% 35% 59% 69%

ConCodeSe locates more relevant classes in the top-N positions than
BugLocator.

Better Same Worse

top-1 top-10 | top-1 top-10 | top-1 | top-10
Average 19% 30% 72% 54% 9% | 16%

Achieved significant gains (i.e. AspectdJ and Pillar-One applications)
MAP values improved almost 90% from 0.17 to 0.33 and from 0.18 to 0.26.

Discussion

Supplementing lexical searches with call relationship
data noticeably improve search accuracy.

Enhancing lexical scoring with call-relations leads to
superior search results.

Provides entry points to the relevant classes within the
context of the CR.

CRs revealed two characteristics:
(1) developer nature with technical details i.e. references to code.
(2) descriptive nature with business terminology i.e. use of concepit.

Discussion

Multiple classes may implement a concept
on average only 3 classes listed as changed in a CR.

Change Requests represent a unit-of-work
concept search in the context of CRs results in false positives.

Conceptual responsibility v.s. technical functionality
mediate improved communication with business users.
finding relevant classes by considering the architecture.

Domain vocabulary in change request descriptions
list of relevant domain vocabulary used in the code.
intelligently suggest the terms for selection when creating a CR.

Related Work

On the use of call relations to recover traceability links,
Hill et al. [1] proposed similar approach to ours.
a query is created with search terms,
source code is searched for matching methods by using LS| method.
a term/document frequency (tf/idf) score is obtained.
call-graph is utilized to evaluate relevance of neighbouring methods.

Petrenko et al. [2] presented a technique called DeplR
that combines Dependency Search (DepS) with IR.
query to obtain a ranked list of methods retrieved by probabilistic LS.

10 methods with highest ranks are selected as entry points.
explore the shortest path on the call-graph to relevant method.

Contextual Model

Relevant

Program Elements

Concluding Remarks

- An algorithm using lexical and structural information
suggests, in a ranked order, classes to be changed.

- Vastly superior to simple string search, as performed by
developers using an IDE.

- Compared to an existing approach,
- improved ranking of affected classes.
- increased percentage of CRs for which relevant classes are retrieved.
- enhanced number of relevant classes suggested among the top-1 or -10.

S
Challenges

- (1) How do | determine the relevance of a class for a CR?
- List of classes that has the search terms.

- List of classes that does not have the search terms and still
connected with those from above list.

- Are they still relevant within the context of a CR?

- (2)How do | enrich the CR vocabulary to create a context?
- Cluster of terms based on term frequency in source code and CR.
- Use structural relations i.e. package names or inheritance.

Challenges

(1) How to determine the relevance of a class for a CR?

<summary>|>Percentile/VaR/TVaR|cann0t be displayed second time</summary>
<description>How to reproduce: run any parametrization = open results = show e.g. 99.5% EROFIT VaR

= hide coluinn again = try to show 99.5% PROFIT VaR again - ERROR nothing happens
</description>
<file>org.pillarone.riskanalytics.apolication.dataaccess.function. AbstractFunction.java</file>
<file>org.pillarone.riskanalytics.application.dataaccess.function. AbstractQuantilePerspectiveBasedFunction.java</file>
<file>org.pillarone.riskanalytics.application.dataaccess.function.FunctionDescriptor.java</iile>
<file>org.pillarone.riskanalytics.application:dataaccess.function.IFunction.java</file>
<file>org.pillarone.riskanalytics.application.dataaccess.function.ParametrizedFunctionDescriptor.java</file>
<file>org.pillarone.riskanalytics.application.dataaceess.function.QuantileBasedFunctignDescriptor.java</file>
<file>org.pillarone.riskanalytics.application.dataaccess.function.SinglelterationFunciion.java</file>
<file>org.pillarone.riskanalytics.application.ui.result.action keyfigure.ParametrizeaKeyFigure Action.java</file>
<file>org.pillarone.riskanalytics.application.ui.result.action.keyfigure.QuantilePetrspectiveBasedKeyFigureAction.java</file>
<file>org.pillarone.riskanalytics.application.ui.result. model. Rest!t ViewModel.java</file>

TvarFunctio 0.075 tvar
VarFunction 0.0375 var
PercentileFungtion | 0.0375 percentile
ProfitCommission |0.0375 profit

S
Challenges

- (2) How to enrich CR vocabulary to create a context?
- Looking at some CR descriptions and source code of the affected
classes revealed some n-term usage like
- "poisson distribution”
- "result template”
- "simulation page"
- "save dialog”
- Also there seems to be a usage mapping between the terms like,

- Show -—-> perspective
- Second time -—-> iteration
- CVS export -—-> exportCVS

- Percentile ---> quantile

Future work

Challenging to find the classes referred by a CR:

in spite our improvements, over 40% of CRs may not be localised.
Results emphasize combined tool support needed.

Further enhance our algorithm by considering domain
concept relations.

An application base with well documented repository like
Prepaid for further research by considering additional
artefacts like git commits history.

B
Thank you

- Contact me per email:
- tezcan@dilshener.de

- My Publications:
- http://crc.open.ac.uk/People/Tezcan Dilshener 41C5

- References

[1] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the Neighborhood with Dora to Expedite Software Maintenance”, in
Proc. 22" Int'l Conf. on Automated Software Engineering, 2007, pp. 14-23

[3] M. Petrenko and V. Rajlich, “Concept location using program dependencies and information retrieval (DepIR),” Information
and Software Technology, vol. 55, no. 4, pp. 651-659, 2013.

