
Leveraging Domain
Vocabulary Across
Artefacts

by
Tezcan Dilshener

tezcan@dilshener.de

Bei dieser Präsentation wird
sicher eine Diskussion mit dem
Publikum entstehen, die zu
Aktionsschritten führt.
Verwenden Sie PowerPoint, um
diese Aktionsschritte während
Ihrer Präsentation festzuhalten.

•  Klicken Sie in der Bild-

schirmpräsentation auf die
rechte Maustaste.

•  Wählen Sie 'Besprechungs-
notizen'.

•  Wählen Sie die Registerkarte
'Aufgaben'.

•  Geben Sie die zur Sprache
kommenden Aktionsschritte
ein.

•  Klicken Sie auf OK, um dieses
Feld zu schließen.

Hierdurch wird automatisch eine

Folie mit Aktionsschritten am
Ende Ihrer Präsentation erstellt,
auf der Ihre Notizen erscheinen.

Agenda
 Introduction

–  Research questions
–  Our Study

 Related work
–  Inspirations

 Data preparation
 Results

–  Vocabulary Correlation
–  Precision and recall
–  Comparing with another tool

 Conclusion

Introduction
  Software require continued maintenance.

–  Original developers gone with the wind (left the project).
–  Documentation and other project artefacts tend to decay.

  Some of the challenges in maintenance.
–  Identification of high-level concepts in source code.
–  Understanding concept context and relations to its domain.

  Program comprehension overhead.
–  Effort required by developers without domain knowledge.
–  Role of domain-specific concepts’ vocabulary.

  Our study: Comparing artefacts of two conceptually
related applications addressing the Basel-II* Accord.

   http://www.bis.org

Research Questions

  Identify opportunities of using artefacts’
vocabulary to reduce maintenance overhead

–  RQ1: What is the adherence of two conceptually related
applications’ vocabulary to the Basel II domain concepts?

–  RQ2: How can the vocabulary be leveraged when searching
for concepts to find the relevant classes for implementing
change requests?

–  RQ3: How much can our tool leverage from artefact and
domain vocabulary compared to another state-of-the-art tool?

Related Work
  Evolution of Source Code Vocabulary by Abebe et al. [2]

–  type of vocabulary relation and what frequent terms refer to.
–  we compare vocabulary beyond code and include CRs.

  Recovery of traceability by Antoniol et al. [3]

–  from source code classes to functional requirements.
–  we attempt to recover between change requests and code.

  Bug localisation based on bug reports by Zhou et al. [4]

–  ranks source code files based on relevant bug reports.
–  we use the tool to rank our artefacts and compare the result.

2.  Abebe et al. “Analyzing the Evolution of the Source Code Vocabulary”, CSMR’09
3.  Antoniol et al. “Recovering traceability links between code and documentation”, TSE’02
4.  Zhou et al. “Where Should the Bugs be Fixed?”, ICSE’12

ConCodeSe - data preparation
 Extraction, search and analysis flow

Vocabulary*
Extraction0

Vocabulary*
Persisting0

Database*
Access0
Hibernate0

Text*
Processing0

Lucene*Analyser0

ConCodeSe0
database0

CR,*Concept,0
User*Guide**
BaselCII*Guide0

Contextual*Model*Creation*and*Search*Services0

Java/Groovy*
Processing0
JIM*/*INTT0

0
Java/Groovy*
Source*Code*

Files0
0

Analysis*
Results*
Excel*file0

Vocabulary*
Search0

10 20 30

Vocabulary*
Analysis0

Fig. 1 ConCodeSe - Data extraction, storage and search

RQ1:Adherence to Basel II Accord
  Searched occurrences of previously identified concepts.

–  87% occur in the official Basel II documentation.

  Each concept occurred in at least one project artefact.

–  concepts across all artefacts: 7 Pillar-One, 14 Pillar-Two.

  4 common concepts across both applications’ artefacts.
–  risk, index, value and time.

8

11 3

CR

UG SRC

Pillar-One Pillar-Two

CR

SRC UG

8
20

16

17

Fig. 2 Concept distribution among artefacts

RQ2:Searching for CR’s classes
  Searched each application for class names matching the

concept words referred by the change requests (CRs).

–  For Pillar-One: 0% recall and precision.
  Discarded frequently occurring concepts i.e.‘time’ &‘current.’

–  For Pillar-Two: very high recall with very low precision.
  Discarded project specific stop-words i.e.‘market’ &‘value.’

  Introduced a project specific mapping mechanism.

  i.e. ‘mask’‘helper’ based on project experience.

 Pillar-One Pillar-Two
recall (%) precision (%) recall (%) precision (%)

33.33 50.00 100.00 20.27
10.00 40.00 100.00 7.59
50.00 9.96 83.33 6.17
46.15 25.00 71.43 6.17

RQ3:Our tool compared to another
  Used a state-of-the-art traceability tool called BugLocator

developed by Zhou et al. [5]

  BugLocator:
–  searches the corpus for the relevant classes using the terms

found in a bug report.

–  ranks the effected files (listed in the bug report) using two
different VSM similarity calculations.

  Performed the same search tasks for Pillar-One and Pillar-
Two as of ConCodeSe

 relevant
classes

BugLocator ConCodeSe

Pillar-One 131 15 21

Pillar-Two 46 10 16

Conclusions
  An efficient approach to relate vocabulary of information

sources for maintenance;
–  Basel II document, Concepts, CRs, user guide and code.
–  Vocabulary overlap between both application’s code.

  Application of approach to industrial code that follows
good naming conventions.
–  Alignment between guide and code could be improved.
–  Descriptive identifiers support high recall, but low precision.
–  Applied simple techniques and improved precision.

  In many cases our simple lexical text search approach
outperformed BugLocator.
–  Illustrates how much it can be leveraged from the artefacts

and domain vocabulary when they correlate,
–  Demonstrate that bug localisation improves when domain

vocabulary is used.

Further research
Our study showed that

–  Despite good naming conventions and vocabulary coverage;
•  Challenging to find the classes referred by a CR.
•  sophisticated approaches fall short when CRs are terse.

In the next step of our research

–  combine domain ontologies with existing natural language and call-
graph techniques.

•  navigate the call-graph to discover additional program elements.
•  utilise domain ontologies to evaluate their relevance.

Our aim
–  Construct the contextual model in ConCodeSe to provide consistent

set of clues and aid program comprehension during maintenance.

